



### MATHEMATICS HIGHER LEVEL PAPER 3 – STATISTICS AND PROBABILITY

Monday 19 May 2008 (afternoon)

1 hour

### INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

-2-

- **1.** [Maximum mark: 12]
  - (a) The random variable Y is such that E(2Y+3) = 6 and Var(2-3Y) = 11.

Calculate

- (i) E(Y);
- (ii) Var(Y);
- (iii)  $E(Y^2)$ .
- (b) Independent random variables R and S are such that

$$R \sim N(5, 1)$$
 and  $S \sim N(8, 2)$ .

The random variable V is defined by V = 3S - 4R.

Calculate P(V > 5).

[6 marks]

[6 marks]

### **2.** [Maximum mark: 7]

A factory makes wine glasses. The manager claims that on average 2 % of the glasses are imperfect. A random sample of 200 glasses is taken and 8 of these are found to be imperfect.

Test the manager's claim at a 1 % level of significance using a one-tailed test.

## **3.** [Maximum mark: 11]

A teacher wants to determine whether practice sessions improve the ability to memorize digits.

- 3 -

He tests a group of 12 children to discover how many digits of a twelve-digit number could be repeated from memory after hearing them once. He gives them test 1, and following a series of practice sessions, he gives them test 2 one week later. The results are shown in the table below.

| Child                                    | A | В | С | D | Е  | F | G | Н  | Ι | J | K | L |
|------------------------------------------|---|---|---|---|----|---|---|----|---|---|---|---|
| Number of digits<br>remembered on test 1 | 4 | 6 | 4 | 7 | 8  | 5 | 6 | 7  | 6 | 8 | 4 | 7 |
| Number of digits<br>remembered on test 2 | 7 | 8 | 5 | 5 | 10 | 7 | 7 | 10 | 8 | 6 | 3 | 9 |

(a) State appropriate null and alternative hypotheses.

(b) Test at the 5 % significance level whether or not practice sessions improve ability to memorize digits, justifying your choice of test. [9 marks]

# **4.** [Maximum mark: 14]

The number of telephone calls received by a helpline over 80 one-minute periods are summarized in the table below.

| Number of calls | 0 | 1  | 2  | 3  | 4  | 5 | 6 |
|-----------------|---|----|----|----|----|---|---|
| Frequency       | 9 | 12 | 22 | 10 | 11 | 8 | 8 |

- (a) Find the exact value of the mean of this distribution.
- (b) Test, at the 5 % level of significance, whether or not the data can be modelled by a Poisson distribution. [12 marks]

Turn over

[2 marks]

[2 marks]

### **5.** [Maximum mark: 16]

A population is known to have a normal distribution with a variance of 3 and an unknown mean  $\mu$ . It is proposed to test the hypotheses  $H_0: \mu = 13, H_1: \mu > 13$  using the mean of a sample of size 2.

- (a) Find the appropriate critical regions corresponding to a significance level of
  - (i) 0.05;
    (ii) 0.01. [8 marks]
- (b) Given that the true population mean is 15.2, calculate the probability of making a Type II error when the level of significance is
  - (i) 0.05;
    (ii) 0.01. [6 marks]
- (c) How is the change in the probability of a Type I error related to the change in the probability of a Type II error? [2 marks]