

MATHEMATICS HIGHER LEVEL PAPER 3 – SETS, RELATIONS AND GROUPS

Monday 19 May 2008 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

M08/5/MATHL/HP3/ENG/TZ2/SG+

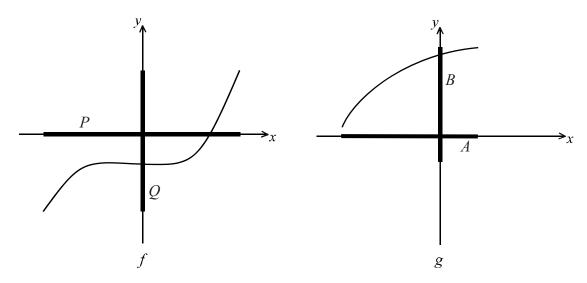
Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 16]

(a)	Draw the Cayley table for the set of integers $G = \{0, 1, 2, 3, 4, 5\}$ under addition modulo 6, $+_6$.	[3 marks]
(b)	Show that $\{G, +_6\}$ is a group.	[4 marks]
(c)	Find the order of each element.	[3 marks]
(d)	Show that $\{G, +_6\}$ is cyclic and state its generators.	[2 marks]
(e)	Find a subgroup with three elements.	[2 marks]
(f)	Find the other proper subgroups of $\{G, +_6\}$.	[2 marks]

2. [Maximum mark: 13]

(a) Below are the graphs of the two functions $f: P \to Q$ and $g: A \to B$.



Determine, with reference to features of the graphs, whether the functions are injective and/or surjective.

[4 marks]

(This question continues on the following page)

(Question 2 continued)

(b) Given two functions $h: X \to Y$ and $k: Y \to Z$.

Show that

- (i) if both h and k are injective then so is the composite function $k \circ h$;
- (ii) if both h and k are surjective then so is the composite function $k \circ h$. [9 marks]
- **3.** [Maximum mark: 6]

Prove that $(A \cap B) \setminus (A \cap C) = A \cap (B \setminus C)$ where *A*, *B* and *C* are three subsets of the universal set *U*.

- **4.** [Maximum mark: 19]
 - (a) The relation aRb is defined on $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ if and only if ab is the square of a positive integer.
 - (i) Show that *R* is an equivalence relation.
 - (ii) Find the equivalence classes of *R* that contain more than one element. [10 marks]
 - (b) Given the group (G, *), a subgroup (H, *) and $a, b \in G$, we define $a \sim b$ if and only if $ab^{-1} \in H$. Show that \sim is an equivalence relation. [9 marks]

- 3 -

[2 marks]

5. [Maximum mark: 6]

(a) Write down why the table below is a Latin square.

	d	е	b	а	С
d	C C	d	е	b	a]
е	d	е	b	а	с
b	а	b	d	С	e
а	b	а	С	е	d
С	e	С	а	d	a c e d b

(b) Use Lagrange's theorem to show that the table is not a group table. [4 marks]