

MATHEMATICS HIGHER LEVEL PAPER 3 – SETS, RELATIONS AND GROUPS

Monday 19 May 2008 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 12]

The binary operation * is defined for $a, b \in \mathbb{Z}^+$ by

$$a * b = a + b - 2$$
.

- (a) Determine whether or not * is
 - (i) closed,
 - (ii) commutative,
 - (iii) associative. [7 marks]
- (b) (i) Find the identity element.
 - (ii) Find the set of positive integers having an inverse under *. [5 marks]

2. [Maximum mark: 10]

The function f is defined by

$$f(x) = \frac{1 - e^{-x}}{1 + e^{-x}}, x \in \mathbb{R}$$

(a)	Find the range of f .	[2 marks]
(b)	Prove that f is an injection.	[3 marks]

(c) Taking the codomain of f to be equal to the range of f, find an expression for $f^{-1}(x)$. [5 marks]

[3 marks]

3. [Maximum mark: 17]

- (a) Find the six roots of the equation $z^6 1 = 0$, giving your answers in the form $r \operatorname{cis} \theta$, $r \in \mathbb{R}^+$, $0 \le \theta < 2\pi$. [4 marks]
- (b) (i) Show that these six roots form a group G under multiplication of complex numbers.
 - (ii) Show that G is cyclic and find all the generators.
 - (iii) Give an example of another group that is isomorphic to *G*, stating clearly the corresponding elements in the two groups. [13 marks]

4. [Maximum mark: 9]

The relation R is defined on ordered pairs by

(a, b)R(c, d) if and only if ad = bc where $a, b, c, d \in \mathbb{R}^+$.

- (a) Show that *R* is an equivalence relation. [6 marks]
- (b) Describe, geometrically, the equivalence classes.

5. [Maximum mark: 12]

Let $p = 2^k + 1$, $k \in \mathbb{Z}^+$ be a prime number and let *G* be the group of integers 1, 2,..., p-1 under multiplication defined modulo *p*.

By first considering the elements 2^1 , 2^2 , ..., 2^k and then the elements 2^{k+1} , 2^{k+2} , ..., show that the order of the element 2 is 2k.

Deduce that $k = 2^n$ for $n \in \mathbb{N}$.

-3-