



### MATHEMATICS HIGHER LEVEL PAPER 1

Monday 5 November 2007 (afternoon)

2 hours

| ( | Candi | idate | sessi | ion n | umbe | r |  |
|---|-------|-------|-------|-------|------|---|--|
| 0 |       |       |       |       |      |   |  |

### INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answer all the questions in the spaces provided.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working. Working may be continued below the lines, if necessary.

| 1. | [Maximum          | mark:   | 61      |
|----|-------------------|---------|---------|
|    | 11110000111101111 | mui iv. | $\circ$ |

| Given that $(x-2)$ of $p$ and of $q$ . | and $(x+2)$ are | factors of $f(x) = x^3$ | $+ px^2 + qx + 4$ , find the value |
|----------------------------------------|-----------------|-------------------------|------------------------------------|
|                                        |                 |                         |                                    |
|                                        |                 |                         |                                    |
|                                        |                 |                         |                                    |
|                                        |                 |                         |                                    |
|                                        |                 |                         |                                    |
|                                        |                 |                         |                                    |
|                                        |                 |                         |                                    |
|                                        |                 |                         |                                    |
|                                        |                 |                         |                                    |
|                                        |                 |                         |                                    |
|                                        |                 |                         |                                    |
|                                        |                 |                         |                                    |



| 2         | [Maximum           | mark. | 67 |
|-----------|--------------------|-------|----|
| <b>4.</b> | I IVI UX IIII UIII | mark. | UI |

| Find the coefficient of the $x^3$ term in the expansion of | $\left(2-\frac{3x}{2}\right)$ | - |
|------------------------------------------------------------|-------------------------------|---|
|                                                            |                               |   |

| <br> | <br> |       | <br> |    |   | <br> |   |       | <br> |   |       | <br> | <br> |       | <br> | <br>  |       |       |       | <br> |   |   |
|------|------|-------|------|----|---|------|---|-------|------|---|-------|------|------|-------|------|-------|-------|-------|-------|------|---|---|
|      |      |       |      |    |   |      |   |       |      |   |       |      |      |       |      |       |       |       |       | <br> |   |   |
|      |      |       |      |    |   |      |   |       |      |   |       |      |      |       |      |       |       |       |       | <br> |   |   |
| <br> |      |       | <br> | ٠. | - | <br> |   |       | <br> |   |       | <br> |      |       | <br> |       |       |       |       | <br> |   |   |
| <br> |      |       | <br> |    | - | <br> |   |       | <br> |   |       | <br> |      |       | <br> |       |       |       |       | <br> |   | • |
|      |      |       |      |    |   |      |   |       |      |   |       |      |      |       |      |       |       | •     | <br>• | <br> | • |   |
| <br> |      | <br>• | <br> |    | - | <br> |   |       | <br> |   |       | <br> |      | <br>- | <br> | <br>  |       |       |       | <br> |   |   |
| <br> |      | <br>• | <br> |    | - | <br> |   |       | <br> |   |       | <br> | <br> |       | <br> | <br>• | <br>• | <br>• |       | <br> |   | • |
| <br> | <br> | <br>• | <br> |    | • | <br> |   |       | <br> | • | <br>٠ | <br> | <br> | <br>٠ | <br> | <br>• |       | <br>• | <br>• | <br> | ٠ |   |
| <br> |      |       | <br> |    | • | <br> | • | <br>• | <br> |   | <br>• | <br> |      | <br>• | <br> | <br>• | <br>• | <br>• | <br>• | <br> | • |   |

|  | 3. | [Maximum | mark: | 6 |
|--|----|----------|-------|---|
|--|----|----------|-------|---|

A sample of discrete data is drawn from a population and given as

66, 72, 65, 70, 69, 73, 65, 71, 75.

| т.  |   | - 1    |  |
|-----|---|--------|--|
| H 1 | n | $\sim$ |  |
|     |   |        |  |

| (a) | the interquartile range;                                | [2 marks] |
|-----|---------------------------------------------------------|-----------|
| (b) | an estimate for the mean of the population;             | [2 marks] |
| (c) | an unbiased estimate of the variance of the population. | [2 marks] |
|     |                                                         |           |
|     |                                                         |           |
|     |                                                         |           |
|     |                                                         |           |
|     |                                                         |           |
|     |                                                         |           |
|     |                                                         |           |
|     |                                                         |           |
|     |                                                         |           |
|     |                                                         |           |



|                                                      | 2                                   |
|------------------------------------------------------|-------------------------------------|
| The first and fourth terms of a geometric series are | 18 and $-\frac{1}{3}$ respectively. |

Find

- (a) the sum of the first n terms of the series; [4 marks]
- (b) the sum to infinity of the series. [2 marks]

.....

.....

.....

The diagram below shows the shaded region A which is bounded by the axes and part of the curve  $y^2 = 8a(2a - x)$ , a > 0. Find in terms of a the volume of the solid formed when A is rotated through  $360^{\circ}$  around the x-axis.



|  |  | <br> |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  | <br> |  |  |  |  | <br> |  |  |  |  |  |  |  |
|--|--|------|--|--|--|--|--|------|--|--|--|--|--|--|--|--|--|------|--|--|--|--|------|--|--|--|--|--|--|--|
|  |  |      |  |  |  |  |  |      |  |  |  |  |  |  |  |  |  |      |  |  |  |  |      |  |  |  |  |  |  |  |
|  |  | <br> |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  | <br> |  |  |  |  | <br> |  |  |  |  |  |  |  |
|  |  | <br> |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  | <br> |  |  |  |  | <br> |  |  |  |  |  |  |  |
|  |  | <br> |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  | <br> |  |  |  |  | <br> |  |  |  |  |  |  |  |
|  |  | <br> |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  | <br> |  |  |  |  | <br> |  |  |  |  |  |  |  |
|  |  | <br> |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  | <br> |  |  |  |  | <br> |  |  |  |  |  |  |  |
|  |  |      |  |  |  |  |  |      |  |  |  |  |  |  |  |  |  |      |  |  |  |  |      |  |  |  |  |  |  |  |

Given that  $y = e^{-x^2}$  find

| (a) | $d^2y$           |   |
|-----|------------------|---|
| (a) | $\frac{1}{dx^2}$ | , |

[3 marks]

(b) the exact values of the *x*-coordinates of the points of inflexion on the graph of  $y = e^{-x^2}$ , justifying that they are points of inflexion.

[3 marks]

| • |  |  |  |  | • | • |  | • |  | • | • | • | • |  |  |  |  |  |  |      |  | • | • | • | • |      |  |  | • | • | • | • | • |  | <br>• | ٠ |
|---|--|--|--|--|---|---|--|---|--|---|---|---|---|--|--|--|--|--|--|------|--|---|---|---|---|------|--|--|---|---|---|---|---|--|-------|---|
|   |  |  |  |  |   |   |  |   |  |   |   |   |   |  |  |  |  |  |  | <br> |  |   |   |   |   | <br> |  |  |   |   |   |   |   |  |       |   |
|   |  |  |  |  |   |   |  |   |  |   |   |   |   |  |  |  |  |  |  | <br> |  |   |   |   |   | <br> |  |  |   |   |   |   |   |  |       |   |
|   |  |  |  |  |   |   |  |   |  |   |   |   |   |  |  |  |  |  |  |      |  |   |   |   |   |      |  |  |   |   |   |   |   |  |       |   |

| 7. praximum mark. C | 7. | [Maximum | mark: | 6 |
|---------------------|----|----------|-------|---|
|---------------------|----|----------|-------|---|

Find the non-unique solution for the following system of simultaneous equations

$$x-y-z=3$$
$$x-2y+z=2$$
$$2x-y-4z=7$$

|   |   |       |   |   |   |   |       |   |   |   |   |   | <br>  |   | <br> |   | <br> |       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|---|---|-------|---|---|---|---|-------|---|---|---|---|---|-------|---|------|---|------|-------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   |       |   |   |   |   |       |   |   |   |   |   | <br>  |   | <br> |   | <br> |       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |       |   |   |   |   |       |   |   |   |   |   | <br>  |   | <br> |   | <br> |       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |       |   |   |   |   |       |   |   |   |   |   | <br>  |   | <br> |   | <br> |       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |       |   |   |   |   |       |   |   |   |   |   | <br>  |   | <br> |   | <br> |       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |       |   |   |   |   |       |   |   |   |   |   | <br>  |   | <br> |   | <br> |       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | , |
|   |   |       |   |   |   |   |       |   |   |   |   |   | <br>  |   | <br> |   | <br> |       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |       |   |   |   |   |       |   |   |   |   |   | <br>  |   | <br> |   | <br> |       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |       |   |   |   |   |       |   |   |   |   |   | <br>  |   | <br> |   | <br> |       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |       |   |   |   |   |       |   |   |   |   |   |       |   |      |   |      |       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| • | • | <br>• | • | • | • | • | <br>• | • | • | • | • | • | <br>• | • | <br> | • | <br> | <br>• | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • |

The diagrams below show the graph of y = f(x) which passes through the points A, B, C and D.

Sketch, indicating clearly the images of A, B, C and D, the graphs of

(a) 
$$y = f(x-4)$$
;

[2 marks]



(b) 
$$y = f(-3x)$$
.

[4 marks]



A furniture manufacturer makes tables. A table leg is considered to be oversize if its

| <b>9.</b> IMaximum mark: ( | 9. | [Maximum | mark: | 67 |
|----------------------------|----|----------|-------|----|
|----------------------------|----|----------|-------|----|

| width is greater than 10.5 cm and undersize if its width is less than 9.5 cm. From experience it is found that 2% of the table legs that are made are oversize and to of the table legs are undersize. The widths of the table legs are normally distributed with mean $\mu$ cm and standard deviation $\sigma$ cm. Find the value of $\mu$ and of $\sigma$ | that 4 %<br>tributed |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                                                                                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                                                                                                                                                             |                      |



| 1                                     | ( k | 1  | 1  |              |
|---------------------------------------|-----|----|----|--------------|
| Determine the values of $k$ for which | 2   | k  | -2 | is singular. |
|                                       | 1   | -2 | k  |              |

| <br> | <br> | <br> | <br> |   | <br> | <br> |  |   |       | <br> |   |       |      |  | <br> |  |   |       |      | <br> | <br> | <br> |  |
|------|------|------|------|---|------|------|--|---|-------|------|---|-------|------|--|------|--|---|-------|------|------|------|------|--|
| <br> | <br> | <br> | <br> |   | <br> | <br> |  |   |       | <br> |   |       |      |  | <br> |  |   |       |      | <br> | <br> | <br> |  |
| <br> | <br> | <br> | <br> |   | <br> | <br> |  |   |       |      |   |       |      |  | <br> |  |   |       |      |      |      | <br> |  |
| <br> | <br> | <br> | <br> |   | <br> | <br> |  |   |       | <br> |   |       |      |  | <br> |  |   |       |      |      |      | <br> |  |
| <br> | <br> | <br> | <br> |   | <br> | <br> |  |   |       | <br> |   |       |      |  | <br> |  |   |       |      |      |      | <br> |  |
| <br> | <br> | <br> | <br> |   | <br> | <br> |  |   |       | <br> |   |       |      |  | <br> |  |   |       |      | <br> | <br> | <br> |  |
|      |      |      |      |   |      |      |  |   |       |      |   |       |      |  |      |  |   |       |      |      |      |      |  |
|      |      |      |      |   |      |      |  |   |       |      |   |       |      |  |      |  |   |       |      |      |      |      |  |
|      |      |      |      |   |      |      |  |   |       |      |   |       |      |  |      |  |   |       |      |      |      |      |  |
|      |      |      |      |   |      |      |  |   |       |      |   |       |      |  |      |  |   |       |      |      |      |      |  |
|      |      |      |      |   |      |      |  |   |       |      |   |       |      |  |      |  |   |       |      |      |      |      |  |
| <br> | <br> | <br> | <br> | _ | <br> | <br> |  | _ | <br>_ | <br> | _ | <br>_ | <br> |  | <br> |  | _ | <br>_ | <br> | <br> | <br> | <br> |  |

The lines  $l_1$  and  $l_2$  have equations

$$r_1 = \begin{pmatrix} 4 \\ 3 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 5 \\ -2 \end{pmatrix} \text{ and } r_2 = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 2 \\ -3 \end{pmatrix}$$

respectively, where  $\lambda$  and  $\mu$  are parameters.

| (a) | Show that $l_1$ passes through the point $(2,-7,4)$ . | [2 marks] |
|-----|-------------------------------------------------------|-----------|
|-----|-------------------------------------------------------|-----------|

| (b) | Determine whether the lines $l_1$ and $l_2$ intersect. | [4 marks] |
|-----|--------------------------------------------------------|-----------|
|     |                                                        |           |
|     |                                                        |           |
|     |                                                        |           |
|     |                                                        |           |
|     |                                                        |           |
|     |                                                        |           |
|     |                                                        |           |
|     |                                                        |           |
|     |                                                        |           |
|     |                                                        |           |
|     |                                                        |           |
|     |                                                        |           |

| 12. IMANIIMII IIMIN. U | 12. | [Maximum | mark: | 6 |
|------------------------|-----|----------|-------|---|
|------------------------|-----|----------|-------|---|

In a promotion to try to increase the sales of a particular brand of breakfast cereal, a picture of a soccer player is put in each packet. There are ten different pictures available. Each picture is equally likely to be found in any packet of breakfast cereal.

Charlotte buys four packets of breakfast cereal.

|                                                                                                                                                                                                | n |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| (b) Of the ten players whose pictures are in the packets, her favourites are Ala and Bob. Find the probability that she finds at least one picture of a favourit player in these four packets. |   |
|                                                                                                                                                                                                |   |
|                                                                                                                                                                                                | • |
|                                                                                                                                                                                                | • |
|                                                                                                                                                                                                |   |
|                                                                                                                                                                                                |   |
|                                                                                                                                                                                                |   |
|                                                                                                                                                                                                |   |
|                                                                                                                                                                                                | • |
|                                                                                                                                                                                                |   |
|                                                                                                                                                                                                |   |
|                                                                                                                                                                                                | - |

Determine the values of x that satisfy the following inequalities

(a)  $\frac{|x|+2}{|x|-3} < 4$ ; [3 marks]

(b)  $\frac{xe^x}{(x^2-1)} \ge 1.$  [3 marks]

A plane  $\Pi$  has equation  $\mathbf{r} \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = 16$  and a line l has equations  $\frac{x-4}{-1} = \frac{y+2}{2} = \frac{z-6}{4}$ .

Show that the line l lies in the plane  $\Pi$ .

| - |       |   |   |       |  |  |   |   |      |   |   |   |       |   |  |       |   |   |   |      |   |   |      |   |   |   |   |  |   |   |   |      |   |   |       |   |   |   |      |
|---|-------|---|---|-------|--|--|---|---|------|---|---|---|-------|---|--|-------|---|---|---|------|---|---|------|---|---|---|---|--|---|---|---|------|---|---|-------|---|---|---|------|
|   |       |   |   |       |  |  |   |   |      |   |   |   |       |   |  |       |   |   |   |      |   |   |      |   |   |   |   |  |   |   |   |      |   |   |       |   |   |   |      |
|   |       |   |   |       |  |  |   |   |      |   |   |   |       |   |  |       |   |   |   |      |   |   |      |   |   |   |   |  |   |   |   |      |   |   |       |   |   |   |      |
|   |       |   |   |       |  |  |   |   |      |   |   |   |       |   |  |       |   |   |   |      |   |   |      |   |   |   |   |  |   |   |   |      |   |   |       |   |   |   |      |
|   |       |   |   |       |  |  |   |   |      |   |   |   |       |   |  |       |   |   |   |      |   |   |      |   |   |   |   |  |   |   |   |      |   |   |       |   |   |   |      |
|   |       |   |   |       |  |  |   |   |      |   |   |   |       |   |  |       |   |   |   |      |   |   |      |   |   |   |   |  |   |   |   |      |   |   |       |   |   |   |      |
|   |       |   |   |       |  |  |   |   |      |   |   |   |       |   |  |       |   |   |   |      |   |   |      |   |   |   |   |  |   |   |   |      |   |   |       |   |   |   |      |
|   |       |   |   |       |  |  |   |   |      |   |   |   |       |   |  |       |   |   |   |      |   |   |      |   |   |   |   |  |   |   |   |      |   |   |       |   |   |   |      |
| • | <br>• | ٠ | • | <br>• |  |  | • | • | <br> | ٠ | ٠ | • | <br>• | • |  | <br>• | • | • | • | <br> | ٠ | • | <br> | • | • | - | ٠ |  | ٠ | ٠ | • | <br> | ٠ | • | <br>• | • | • | - | <br> |

| <b>15.</b> | [Maximum | mark: | 61 |
|------------|----------|-------|----|
|            |          |       |    |

| (a) | Solv | e the equation $2(4^x) + 4^{-x} = 3$ .                                                           | [3 marks] |
|-----|------|--------------------------------------------------------------------------------------------------|-----------|
| (b) | (i)  | Solve the equation $a^x = e^{2x+1}$ where $a > 0$ , giving your answer for $x$ in terms of $a$ . |           |
|     | (ii) | For what value of a does the equation have no solution?                                          | [3 marks] |
|     |      |                                                                                                  |           |
|     |      |                                                                                                  |           |
|     |      |                                                                                                  |           |
|     |      |                                                                                                  |           |
|     |      |                                                                                                  |           |
|     |      |                                                                                                  |           |
|     |      |                                                                                                  |           |
|     |      |                                                                                                  |           |
|     |      |                                                                                                  |           |
|     |      |                                                                                                  |           |

| <b>16.</b> | [Maximum | mark: | 6 |
|------------|----------|-------|---|
|            |          |       |   |

| by its owner. | Find the r | number of ways | our people in each can<br>in which the remaini<br>ent of people within a | ing nine people may |
|---------------|------------|----------------|--------------------------------------------------------------------------|---------------------|
|               |            |                |                                                                          |                     |
|               |            |                |                                                                          |                     |
|               |            |                |                                                                          |                     |
|               |            |                |                                                                          |                     |
|               |            |                |                                                                          |                     |
|               |            |                |                                                                          |                     |
|               |            |                |                                                                          |                     |
|               |            |                |                                                                          |                     |
|               |            |                |                                                                          |                     |
|               |            |                |                                                                          |                     |
|               |            |                |                                                                          |                     |
|               |            |                |                                                                          |                     |
|               |            |                |                                                                          |                     |
|               |            |                |                                                                          |                     |

| 17.          | [Maximum                | mark:     | 6        |
|--------------|-------------------------|-----------|----------|
| <b>±</b> / • | 1 111 0000 011 0 0011 0 | micum iv. | $\sim$ 1 |

| Find $\int_0^a \arcsin x  dx$ , $0 < a < 1$ . |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------|--|--|--|--|--|--|--|--|--|--|
|                                               |  |  |  |  |  |  |  |  |  |  |
|                                               |  |  |  |  |  |  |  |  |  |  |
|                                               |  |  |  |  |  |  |  |  |  |  |
|                                               |  |  |  |  |  |  |  |  |  |  |
|                                               |  |  |  |  |  |  |  |  |  |  |
|                                               |  |  |  |  |  |  |  |  |  |  |
|                                               |  |  |  |  |  |  |  |  |  |  |
|                                               |  |  |  |  |  |  |  |  |  |  |
|                                               |  |  |  |  |  |  |  |  |  |  |
|                                               |  |  |  |  |  |  |  |  |  |  |
|                                               |  |  |  |  |  |  |  |  |  |  |
|                                               |  |  |  |  |  |  |  |  |  |  |



#### [Maximum mark: 6] 18.

The diagram below shows a pair of intersecting circles with centres at P and Q with radii of 5 cm and 6 cm respectively. RS is the common chord of both circles and PQ is 7 cm.



Find the area of the shaded region.

| ٠ |  |  |  |  |      |  |  |  |  |  |  |       |  |  |  |  |  |  |  |  |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |
|---|--|--|--|--|------|--|--|--|--|--|--|-------|--|--|--|--|--|--|--|--|------|---|--|--|--|--|--|--|--|--|--|--|--|--|--|
|   |  |  |  |  |      |  |  |  |  |  |  |       |  |  |  |  |  |  |  |  |      | - |  |  |  |  |  |  |  |  |  |  |  |  |  |
|   |  |  |  |  |      |  |  |  |  |  |  |       |  |  |  |  |  |  |  |  |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |
|   |  |  |  |  |      |  |  |  |  |  |  |       |  |  |  |  |  |  |  |  |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |
|   |  |  |  |  |      |  |  |  |  |  |  | <br>• |  |  |  |  |  |  |  |  |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |
|   |  |  |  |  |      |  |  |  |  |  |  |       |  |  |  |  |  |  |  |  |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |
|   |  |  |  |  |      |  |  |  |  |  |  |       |  |  |  |  |  |  |  |  |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |
|   |  |  |  |  |      |  |  |  |  |  |  |       |  |  |  |  |  |  |  |  | <br> |   |  |  |  |  |  |  |  |  |  |  |  |  |  |
|   |  |  |  |  |      |  |  |  |  |  |  |       |  |  |  |  |  |  |  |  | <br> |   |  |  |  |  |  |  |  |  |  |  |  |  |  |
|   |  |  |  |  |      |  |  |  |  |  |  |       |  |  |  |  |  |  |  |  | <br> |   |  |  |  |  |  |  |  |  |  |  |  |  |  |
|   |  |  |  |  | <br> |  |  |  |  |  |  |       |  |  |  |  |  |  |  |  | <br> |   |  |  |  |  |  |  |  |  |  |  |  |  |  |
|   |  |  |  |  |      |  |  |  |  |  |  |       |  |  |  |  |  |  |  |  |      |   |  |  |  |  |  |  |  |  |  |  |  |  |  |

| Prove that $(\sqrt{3} + i)^n + (\sqrt{3} - i)^n$ is real, where $n \in \mathbb{Z}^+$ . |                                         |  |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|--|--|--|--|--|--|--|
|                                                                                        |                                         |  |  |  |  |  |  |  |  |  |  |
|                                                                                        |                                         |  |  |  |  |  |  |  |  |  |  |
|                                                                                        |                                         |  |  |  |  |  |  |  |  |  |  |
|                                                                                        |                                         |  |  |  |  |  |  |  |  |  |  |
|                                                                                        |                                         |  |  |  |  |  |  |  |  |  |  |
|                                                                                        |                                         |  |  |  |  |  |  |  |  |  |  |
|                                                                                        |                                         |  |  |  |  |  |  |  |  |  |  |
|                                                                                        |                                         |  |  |  |  |  |  |  |  |  |  |
|                                                                                        |                                         |  |  |  |  |  |  |  |  |  |  |
|                                                                                        |                                         |  |  |  |  |  |  |  |  |  |  |
|                                                                                        |                                         |  |  |  |  |  |  |  |  |  |  |
|                                                                                        |                                         |  |  |  |  |  |  |  |  |  |  |
|                                                                                        | • • • • • • • • • • • • • • • • • • • • |  |  |  |  |  |  |  |  |  |  |

Solve the differential equation  $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$ , given that  $y = \sqrt{3}$  when  $x = \frac{\sqrt{3}}{3}$ .

Give your answer in the form  $y = \frac{ax + \sqrt{a}}{a - x\sqrt{a}}$  where  $a \in \mathbb{Z}^+$ .

......

.....

.....