Candidate session number

MATHEMATICS HIGHER LEVEL PAPER 1

Thursday 2 November 2006 (afternoon)

0 0

2 hours

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answer all the questions in the spaces provided.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working. Working may be continued below the lines, if necessary.

- 1. (a) Find the inverse of the matrix $\begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 4 \end{pmatrix}$.
 - (b) **Hence** solve the system of equations

$$x+2y+z=0$$
$$x+y+2z=7$$
$$2x+y+4z=17$$

 	 •	 •	 •	 ٠	 	•		٠		 •	•	•	•		 •	•	•	•		•	•	 ٠	•		٠	•	•	٠	 •	•	•	 	٠	 	•	٠	
 	 -	 -			 													-						 		-						 		 			
 					 													•						 								 , .		 			
 					 													•						 								 		 			

Express $(\sqrt{3}-2)^3$ in the form $a\sqrt{3}+b$, where $a, b \in \mathbb{Z}$.

- 3. Let f be the function defined for $x > -\frac{1}{3}$ by $f(x) = \ln(3x+1)$.
 - (a) Find f'(x).
 - (b) Find the equation of the normal to the curve y = f(x) at the point where x = 2. Give your answer in the form y = ax + b where $a, b \in \mathbb{R}$.

4. Bag 1 contains 4 red cubes and 5 blue cubes. Bag 2 contains 7 red cubes and 2 blue cubes. Two cubes are drawn at random, the first from Bag 1 and the second from Bag 2.
(a) Find the probability that the cubes are of the same colour.
(b) Given that the cubes selected are of different colours, find the probability that the red cube was selected from Bag 1.

5.	The sum to infinity of a geometric series is 32. The sum of the first four terms is 30 and all the terms are positive.
	Find the difference between the sum to infinity and the sum of the first eight terms.

6. Solve $\tan^2 2\theta = 1$, in the interval $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$.

.....

.....

.....

.....

The random variable X follows a Poisson distribution. Given that $P(X \le 1) = 0.2$, find
(a) the mean of the distribution;
(b) $P(X \le 2)$.

7.

8. A sum of \$100 is invested.

(a) If the interest is compounded annually at a rate of 5 % per year, find the total value *V* of the investment after 20 years.

(b) If the interest is compounded monthly at a rate of $\frac{5}{12}$ % per month, find the minimum number of months for the value of the investment to exceed V.

......

.....

.....

- **9.** A certain type of vegetable has a weight which follows a normal distribution with mean 450 grams and a standard deviation 50 grams.
 - (a) In a load of 2000 of these vegetables, calculate the expected number with a weight greater than 525 grams.

(b)	Find the upper quartile of the distribution.

10. Let z_1 and z_2 be complex numbers. Solve the simultaneous equations

$$2z_1 + 3z_2 = 7$$
, $z_1 + iz_2 = 4 + 4i$

Give your answers in the form z = a + bi, where $a, b \in \mathbb{Z}$.

-			-			-	 																	 					-	 			-	 		
-			-			-	 																	 						 				 . .		
							 																	 						 				 . .		
							 							-	-						-	-		 						 				 . .		

11. The lines L_1 and L_2 have parametric equations

$$L_1: x = 1 + 2\lambda$$
, $y = 1 + 3\lambda$, $z = 1 - \lambda$
 $L_2: x = 2 - \mu$, $y = 3 + 4\mu$, $z = 4 + 2\mu$

Find the angle between L_1 and L_2 .

12. The graph below represents $y = a \sin(x+b) + c$, where a, b, and c are constants.

Find values for a, b and c.

13.	Let P be the point $(1, 0, -2)$ and Π be the plane $x + y - 2z + 3 = 0$. Let P' be the reflection of P in the plane Π . Find the coordinates of the point P'.

14.	Solve the equation $p, q \in \mathbb{Z}$.	$9\log_5 x = 25$	$\log_x 5$, expressing	your answers	in the	form $5^{\overline{q}}$, where

15. Consider the curves C_1 , C_2 with equations

$$C_1$$
: $y = x^2 + kx + k$, where $k < 0$ is a constant C_2 : $y = -x^2 + 2x - 4$.

Both curves pass through the point P and the tangent at P to one of the curves is also a tangent at P to the other curve.

(a) Find the value of k.

	(1-)	Dies d 4le a	a a andin ata a	of D
-	(b)	rina me	coordinates	OI P.

• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	

In the triangle ABC, $\hat{A} = 30^{\circ}$, $a = 5$ and $c = 7$. Find the difference in area between the two possible triangles for ABC.

17. Solve the differential equation

$$(x+2)^2 \frac{\mathrm{d}y}{\mathrm{d}x} = 4xy \quad (x > -2)$$

given that y=1 when x=-1.

.....

The region enclosed by the curves $y^2 = kx$ and $x^2 = ky$, where $k > 0$, is denoted by R . Given that the area of R is 12, find the value of k .

18.

9.		radius and height of a cylinder are both equal to x cm. The curved surface area of the ider is increasing at a constant rate of $10 \text{ cm}^2/\text{sec}$. When $x = 2$, find the rate of change of
	(a)	the radius of the cylinder,
	(b)	the volume of the cylinder.

20.	Let \hat{A} , \hat{B} , \hat{C} be the angles of a triangle. Show that $\tan \hat{A} + \tan \hat{B} + \tan \hat{C} = \tan \hat{A} \tan \hat{B} \tan \hat{C}$.