

| MATHEN  | <b>MATICS</b> |
|---------|---------------|
| HIGHER  | <b>LEVEL</b>  |
| PAPER 1 |               |

| Monday | 7 | May | 2001 | (afternoon) | ) |
|--------|---|-----|------|-------------|---|
|--------|---|-----|------|-------------|---|

| $\mathbf{a}$ | 1     |
|--------------|-------|
| 1.           | nours |

|  | Na | ame  |      |  |
|--|----|------|------|--|
|  |    |      |      |  |
|  | Nu | mber | <br> |  |
|  |    |      |      |  |

## **INSTRUCTIONS TO CANDIDATES**

- Write your name and candidate number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answer all the questions in the spaces provided.
- Unless otherwise stated in the question, all numerical answers must be given exactly or to three significant figures, as appropriate.
- Write the make and model of your calculator in the box below e.g. Casio fx-9750G, Sharp EL-9400, Texas Instruments TI-85.

## Calculator

| Make | Model |
|------|-------|
|      |       |

|   | EXAMINER | TEAM LEADER | IBCA  |  |  |
|---|----------|-------------|-------|--|--|
|   | TOTAL    | TOTAL       | TOTAL |  |  |
| ı | /60      | /60         | /60   |  |  |

Maximum marks will be given for correct answers. Where an answer is wrong, some marks may be given for a correct method provided this is shown by written working. Working may be continued below the box, if necessary. Where graphs from a graphic display calculator are being used to find solutions, you should sketch these graphs as part of your answer.

1. Let 
$$f(t) = t^{\frac{1}{3}} \left( 1 - \frac{1}{2t^{\frac{5}{3}}} \right)$$
. Find  $\int f(t) dt$ .

| Working: | · · · · · · · · · · · · · · · · · · · |
|----------|---------------------------------------|
| Working. |                                       |
|          |                                       |
|          |                                       |
|          |                                       |
|          |                                       |
|          |                                       |
|          | Answer:                               |

2. Solve  $2 \sin x = \tan x$ , where  $-\frac{\pi}{2} < x < \frac{\pi}{2}$ .

| Working: |          |
|----------|----------|
|          |          |
|          |          |
|          |          |
|          |          |
|          | Answers: |
|          |          |

Turn over

3. Give a full geometric description of the transformation represented by the matrix  $\begin{pmatrix} \frac{4}{5} & \frac{3}{5} \\ \frac{3}{5} & -\frac{4}{5} \end{pmatrix}$ .

| Working: |         |
|----------|---------|
|          |         |
|          |         |
|          |         |
|          |         |
| !        | Answer: |
|          |         |

**4.** Find the gradient of the tangent to the curve  $3x^2 + 4y^2 = 7$  at the point where x = 1 and y > 0.

| Working: |         |  |
|----------|---------|--|
|          |         |  |
|          |         |  |
|          |         |  |
|          |         |  |
|          |         |  |
|          |         |  |
|          | Answer: |  |

- 5. Let  $f: x \mapsto \sqrt{\frac{1}{x^2} 2}$ . Find
  - (a) the set of real values of x for which f is real and finite;
  - (b) the range of f.

| Working: |              |
|----------|--------------|
|          |              |
|          |              |
|          |              |
|          |              |
|          | Answers: (a) |
|          | (b)          |

**6.** A machine produces packets of sugar. The weights in grams of thirty packets chosen at random are shown below.

| Weight (g) | 29.6 | 29.7 | 29.8 | 29.9 | 30.0 | 30.1 | 30.2 | 30.3 |
|------------|------|------|------|------|------|------|------|------|
| Frequency  | 2    | 3    | 4    | 5    | 7    | 5    | 3    | 1    |

Find unbiased estimates of

- (a) the mean of the population from which this sample is taken;
- (b) the variance of the population from which this sample is taken.

| Working: |          |
|----------|----------|
|          |          |
|          |          |
|          |          |
|          |          |
| Г        |          |
|          | Answers: |
|          | (a)      |
|          | (b)      |

- 7. The *n*th term,  $u_n$ , of a geometric sequence is given by  $u_n = 3(4)^{n+1}$ ,  $n \in \mathbb{Z}^+$ .
  - (a) Find the common ratio r.
  - (b) Hence, or otherwise, find  $S_n$ , the sum of the first n terms of this sequence.

|          | <u> </u> |
|----------|----------|
| Working: |          |
|          |          |
|          |          |
|          |          |
|          |          |
|          |          |
|          |          |
|          |          |
|          |          |
|          | Answers: |
|          | (a)      |
|          | (b)      |

8. Let  $f: x \mapsto \frac{\sin x}{x}$ ,  $\pi \le x \le 3\pi$ . Find the area enclosed by the graph of f and the x-axis.

| Working: |         |
|----------|---------|
|          |         |
|          |         |
|          |         |
|          |         |
|          |         |
|          |         |
|          | Answer: |

9. Find the equation of the line of intersection of the two planes -4x + y + z = -2 and 3x - y + 2z = -1.

| Working: |         |
|----------|---------|
|          |         |
|          |         |
|          |         |
|          |         |
|          |         |
| Г        |         |
|          | Answer: |
|          |         |

10. (z + 2i) is a factor of  $2z^3 - 3z^2 + 8z - 12$ . Find the other two factors.

| Working: |          |
|----------|----------|
|          |          |
|          |          |
|          |          |
|          |          |
|          | Answers: |
|          |          |

11. Given that  $P(X) = \frac{2}{3}$ ,  $P(Y|X) = \frac{2}{5}$  and  $P(Y|X') = \frac{1}{4}$ , find

- (a) P(Y');
- (b)  $P(X' \cup Y')$ .

| Working: |          |
|----------|----------|
|          |          |
|          |          |
|          |          |
|          |          |
|          | Answers: |
|          | (a)      |

12. Find an equation of the plane containing the two lines

$$x-1=\frac{1-y}{2}=z-2$$
 and  $\frac{x+1}{3}=\frac{2-y}{3}=\frac{z+2}{5}$ .

| Working: |         |
|----------|---------|
|          |         |
|          |         |
|          |         |
|          |         |
|          |         |
|          |         |
|          | Answer: |

13. Z is the standardised normal random variable with mean 0 and variance 1. Find the value of a such that  $P(|Z| \le a) = 0.75$ .

| Working: |         |
|----------|---------|
|          |         |
|          |         |
|          |         |
|          |         |
| _        |         |
|          | Answer: |

**14.** Given that  $z = (b + i)^2$ , where b is real and positive, find the **exact** value of b when arg  $z = 60^\circ$ .

| Working: |         |
|----------|---------|
|          |         |
|          |         |
|          |         |
|          |         |
|          |         |
|          |         |
|          | Answer: |

15. X is a binomial random variable, where the number of trials is 5 and the probability of success of each trial is p. Find the values of p if P(X=4)=0.12.

| Working: |         |
|----------|---------|
|          |         |
|          |         |
|          |         |
|          |         |
|          |         |
|          | Answer: |

Turn over

| 16. | Find the general solution of the differential equation | $\frac{\mathrm{d}x}{\mathrm{d}t} = kx(5-x)$ , where $0 < x < 5$ , and $k$ |
|-----|--------------------------------------------------------|---------------------------------------------------------------------------|
|     | is a constant.                                         |                                                                           |

| Working: |         |
|----------|---------|
|          |         |
|          |         |
|          |         |
|          |         |
|          |         |
|          | Answer: |

17. An astronaut on the moon throws a ball vertically upwards. The height, s metres, of the ball, after t seconds, is given by the equation  $s = 40t + 0.5at^2$ , where a is a constant. If the ball reaches its maximum height when t = 25, find the value of a.

| Working: |         |
|----------|---------|
|          |         |
|          |         |
|          |         |
|          |         |
|          |         |
|          | Answer: |
|          |         |

18. The equation  $kx^2 - 3x + (k+2) = 0$  has two distinct real roots. Find the set of possible values of k.

| Working: |          |
|----------|----------|
|          |          |
|          |          |
|          |          |
|          |          |
|          |          |
|          | Auguang  |
|          | Answers: |

221–236 **Turn over** 

19. The diagram shows the graph of the functions  $y_1$  and  $y_2$ .



On the same axes sketch the graph of  $\frac{y_1}{y_2}$ . Indicate clearly where the x-intercepts and asymptotes occur.

| Working: |  |  |  |
|----------|--|--|--|
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |

- **20.** The function f is given by  $f: x \mapsto e^{(1+\sin \pi x)}, x \ge 0$ .
  - (a) Find f'(x).

Let  $x_n$  be the value of x where the  $(n+1)^{\text{th}}$  maximum or minimum point occurs,  $n \in \mathbb{N}$ . (i.e.  $x_0$  is the value of x where the first maximum or minimum occurs,  $x_1$  is the value of x where the second maximum or minimum occurs, etc).

(b) Find  $x_n$  in terms of n.

| Working: |          |
|----------|----------|
|          |          |
|          |          |
|          |          |
|          |          |
|          | Answers: |
|          | (a)      |
|          | (b)      |