MARKSCHEME

May 1999

MATHEMATICAL METHODS

Standard Level

Paper 1

1.
$$$24.50 \times 780 = $19110$$
 (A1)
 $(1240 - 780) \times 24.50 \times 0.8 = 9016 (M1)(A1)
Total \$28126 (A1)

2. (a)
$$x^2 - 3x - 10 = (x - 5)(x + 2)$$
 (M1)(A1)

(b)
$$x^2 - 3x - 10 = 0 \Rightarrow (x - 5)(x + 2) = 0$$
 (M1) $\Rightarrow x = 5 \text{ or } x = -2$ (A1)

Answers: (a)
$$(x-5)(x+2)$$
 (C2)

(b)
$$x = 5 \text{ or } x = -2$$
 (C2)

3. (a)
$$p = -\frac{1}{2}, q = 2$$
 (A1)(A1) or vice versa

(b) By symmetry
$$C$$
 is midway between p, q (M1)

Note: This (M1) may be gained by implication

$$\Rightarrow x\text{-coordinate is } \frac{-\frac{1}{2}+2}{2} = \frac{3}{4}$$
 (A1)

Answer: (a)
$$p = -\frac{1}{2}, q = 2$$
 (C2)

(b)
$$x = \frac{3}{4}$$

4.
$$y = x^3 + 1$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2$$

= Slope of tangent at any point

Therefore at point where
$$x = 1$$
, slope = 3 (M1).

$$\Rightarrow \text{Slope of normal} = -\frac{1}{3} \tag{M1)(A1)}$$

$$\Rightarrow \text{Equation of normal:} \quad y-2 = -\frac{1}{3}(x-1)$$

$$3y - 6 = -x + 1 x + 3y - 7 = 0$$
 (A1)

Answer:
$$x + 3y - 7 = 0$$
 (C4)

Note: Accept equivalent forms e.g. $y = -\frac{1}{3}x + 2\frac{1}{3}$

5. (a)
$$M\left(\frac{-4+2}{2}, \frac{-2+2}{2}\right) = (-1, 0)$$
 (M1)(A1)

(b) Gradient
$$CM = \frac{0-3}{-1+3}$$
 (M1)

$$=-\frac{3}{2} \tag{A1}$$

Answers: (a)
$$(-1,0)$$
 (C2)

(b)
$$-\frac{3}{2}$$

6.
$$17 + 27 + 37 + ... + 417$$

$$17 + (n-1)10 = 417$$

$$10(n-1) = 400$$
(M1)

$$n = 41 \tag{A1}$$

$$S_{41} = \frac{41}{2} (2(17) + 40(10)) \tag{M1}$$

$$=41(17+200)$$

$$= 8897 \tag{A1}$$

OR

$$S_{41} = \frac{41}{2}(17 + 417) \tag{M1}$$

$$=\frac{41}{2}(434)$$

$$=8897 \tag{A1}$$

Answer: 8897 (C4)

7. Note: Award (M1) for identifying the largest angle.

$$\cos \alpha = \frac{4^2 + 5^2 - 7^2}{2 \times 4 \times 5} \tag{M1}$$

$$=-\frac{1}{5} \tag{A1}$$

$$\Rightarrow \alpha = 101.5^{\circ}$$
 (A1)

OR Find other angles first

$$\beta = 44.4^{\circ} \qquad \gamma = 34.0^{\circ} \tag{M1}$$

$$\Rightarrow \alpha = 101.6^{\circ} \tag{A1)(A1)}$$

Answer: $\alpha = 101.5^{\circ} \text{ or } 101.6^{\circ}$ (C4)

Note: Award (C3) if not given to the correct accuracy

8.
$$\int_{1}^{22} \frac{\mathrm{d}x}{3x-2} = \frac{1}{3} \ln[3x-2]_{1}^{22}$$
 (A1)(A1)

$$= \frac{1}{3} [\ln 64 - \ln 1]$$

$$=\frac{1}{3}\ln 64$$

$$= \ln 4 \tag{AI}$$

$$\Rightarrow b = 4 \tag{A1}$$

Answer:
$$b=4$$
 (C4)

9. (a)
$$p(\text{red even}) = \frac{1}{2}$$
 (A1)

 $p(\text{green number}) = \frac{15}{36}$ (M2)(A1)

Note: Award up to (M2) if they do not get the right answer, e.g. counting 61, 62, 63, 64, 65, 51....or diagram.

Answers: (a)
$$p(\text{red even}) = \frac{1}{2}$$
 (C1)

(b)
$$p(\text{green} > \text{red}) = \frac{5}{12}$$
 (C3)

10. (a)
$$p=3$$
 (A1)

(b) Area =
$$\int_0^{\frac{\pi}{2}} 3\cos x \, dx$$
 (M1)

$$= \left[3\sin x\right]_0^{\frac{\pi}{2}} \tag{A1}$$

Answers: (a)
$$p=3$$
 (C1)

11.
$$2p^2 + 12p = 14$$
 (M1)(A1)

$$p^{2} + 6p - 7 = 0$$

$$(p+7)(p-1) = 0$$
(A1)

$$p = -7 \text{ or } p = 1 \tag{A1}$$

Note: Both answers are required for the final (A1)

Answer:
$$p = -7 \text{ or } p = 1$$
 (C4)

12. $AB = r\theta$

$$=\frac{1}{2}r^2\theta\times\frac{2}{r}\tag{M1)(A1)}$$

$$=21.6\times\frac{2}{5.4}$$

$$= 8 \text{ cm}$$
 (A1)

OR
$$\frac{1}{2} \times (5.4)^2 \theta = 21.6$$

$$\Rightarrow \theta = \frac{4}{2.7} \quad (= 1.481 \text{ radians}) \tag{M1}$$

$$AB = r\theta \tag{A1}$$

$$=5.4\times\frac{4}{2.7}\tag{M1}$$

$$= 8 \text{ cm}$$
 (A1)

Answer: 8 cm (C4)

13. (a)
$$\vec{CD} = \vec{OD} - \vec{OC}$$
 (A1)

(b)
$$\vec{OA} = \frac{1}{2}\vec{CD}$$

$$=\frac{1}{2}(\vec{OD}-\vec{OC}) \tag{A1}$$

(c)
$$\overrightarrow{AD} = \overrightarrow{OD} - \overrightarrow{OA}$$

$$= \overrightarrow{OD} - \frac{1}{2}(\overrightarrow{OD} - \overrightarrow{OC}) \tag{A1}$$

$$=\frac{1}{2}\overrightarrow{OD} + \frac{1}{2}\overrightarrow{OC} \tag{A1}$$

Answers: (a)
$$\overrightarrow{CD} = \overrightarrow{OD} - \overrightarrow{OC}$$
 (C1)

(b)
$$\vec{OA} = \frac{1}{2}(\vec{OD} - \vec{OC})$$

(c)
$$\overrightarrow{AD} = \frac{1}{2} \overrightarrow{OD} + \frac{1}{2} \overrightarrow{OC}$$
 (C2)

Note: Deduct / I mark / (once only) if appropriate vector notation is omitted.

14. Shaded region is above
$$y = 1$$
 i.e. $y \ge 1$ (A1)

And to the right of y-axis i.e. $x \ge 0$ (A1)

Also it is bounded by line passing through (0,3) and (2,0)

This line is 3x + 2y = 6 by inspection or otherwise (A1)

Then test some point e.g. (0,0) to get the inequality $3x + 2y \le 6$ (A1)

Answer:
$$x \ge 0, y \ge 1, 3x + 2y \le 6$$
 (C1)(C1)(C2)

Notes: Deduct [1 mark] if one or more strict inequalities are given.

Do not award (C) marks if the final answer is given as an equation.

15.
$$9^{x-1} = \left(\frac{1}{3}\right)^{2x}$$

$$3^{2x-2} = 3^{-2x} \tag{M1}(A1)$$

$$2x - 2 = -2x \tag{A1}$$

$$x = \frac{1}{2} \tag{A1}$$

Answer:
$$x = \frac{1}{2}$$
 (C4)

16. Required term is
$$\binom{8}{5}(3x)^5(-2)^3$$
 (A1)(A1)(A1)

Therefore the coefficient of
$$x^5$$
 is $56 \times 243 \times -8$
= -108864 (A1)

Answer:
$$-108864$$
 (C4)

17. (a)
$$y = \sqrt{3-4x} = (3-4x)^{\frac{1}{2}}$$

$$\frac{dy}{dx} = \frac{1}{2}(3-4x)^{-\frac{1}{2}}(-4)$$
(A1)(A1)

Note: Award (A1) for each element, to a maximum of [2 marks]

$$=-\frac{2}{\sqrt{3-4x}}\tag{A0}$$

(b)
$$y = e^{\sin x}$$

$$\frac{dy}{dx} = (\cos x)(e^{\sin x})$$
 (A1)(A1)

Note: Award (A1) for each element

Answers: (a)
$$\frac{dy}{dx} = -\frac{2}{\sqrt{3-4x}}$$
 (C2)

(b)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = (\cos x)(\mathrm{e}^{\sin x})$$
 (C2)

18. (a)
$$\vec{u} = -\vec{i} + 2\vec{j}$$
 $\vec{v} = 3\vec{i} + 5\vec{j}$ (A1)

(b)
$$|\vec{u} + 2\vec{v}| = \sqrt{5^2 + 12^2}$$

= 13 (A1)

Vector
$$\vec{w} = \frac{26}{13} (5\vec{i} + 12\vec{j})$$
 (A1)

$$=10\vec{i}+24\vec{j} \tag{A1}$$

Answers: (a)
$$\vec{u} + 2\vec{v} = 5\vec{i} + 12\vec{j}$$
 (C1)

(b)
$$\vec{w} = 10\vec{i} + 24\vec{j}$$
 (C3)

19.
$$(g \circ f)(x) = 0 \Rightarrow 2\cos x + 1 = 0$$
 (M1)

$$\Rightarrow \qquad \cos x = -\frac{1}{2} \tag{A1}$$

$$x = \frac{2\pi}{3}, \frac{4\pi}{3} \tag{A1)(A1)$$

Answer:
$$x = \frac{2\pi}{3}, \frac{4\pi}{3}$$
 (C4)

Note: Accept 120°, 240°

20.
$$f(x) = x - 2\sin x$$

$$f'(x) = 1 - 2\cos x \tag{A1}$$

$$x_1 = 2 - \frac{x_0 - 2\sin x_0}{1 - 2\cos x_0}$$

$$=2-\frac{2-2\sin 2}{1-2\cos 2}$$
 (A1)

$$=2-\frac{0.181406}{1.832294}\tag{A1}$$

$$= 2 - 0.0990$$

$$= 1.901$$

$$= 1.90 \text{ to } 3 \text{ s.f.}$$
 (A1)

Answer:
$$x_1 = 1.90 \text{ to } 3 \text{ s.f.}$$
 (C4)