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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 
with no working. Answers must be supported by working and/or explanations.  In particular, solutions 
found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to 
find a solution, you should sketch these as part of your answer.  Where an answer is incorrect, some marks 
may be given for a correct method, provided this is shown by written working.  All students should therefore 
be advised to show their working.

1. [Total mark:  23]

 Part A [Maximum mark:  9]

 (a) Assuming the series for ex , find the first five terms of the Maclaurin series for 

1
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π
e

− x

. [3 marks]

 (b) (i) Use your answer to (a) to find an approximate expression for the cumulative 
distribution function of N ( , )0 1 .  

  (ii) Hence find an approximate value for P ( . . )− ≤ ≤0 5 0 5Z , where 
Z  N ( , )0 1 . [6 marks]

 Part B [Maximum mark:  14]

A machine fills containers with grass seed.  Each container is supposed to weigh 28 kg.  
However the weights vary with a standard deviation of 0.54 kg.  A random sample of 
24 bags is taken to check that the mean weight is 28 kg. 

 (a) State and justify an appropriate test procedure giving the null and alternate 
hypotheses. [5 marks]

 (b) What is the critical region for the sample mean if the probability of a Type I error 
is to be 3.5 %? [7 marks]

 (c) If the mean weight of the bags is actually 28.1 kg, what would be the probability 
of a Type II error? [2 marks]



M09/5/FURMA/SP2/ENG/TZ0/XX

2209-7102

– 3 –

Turn over 

2. [Total mark:  24]

 Part A [Maximum mark:  16]

 (a) (i) Show that  4  (the set of integers modulo 4) together with the operation  
+4  (addition modulo 4) form a group  G .  You may assume associativity.

  (ii) Show that  G  is cyclic. [9 marks]

 (b) Using Cayley tables or otherwise, show that  G  and H = ×( ){ , , , },1 2 3 4 5  are 
isomorphic where ×5  is multiplication modulo 5.  State clearly all the possible 
bijections. [7 marks]

 Part B [Maximum mark:  8]

A group has exactly three elements, the identity element  e ,  h  and  k .  Given the 
operation is denoted by ⊗ , show that 

 (a) h k e⊗ = ; [3 marks]

 (b) the group is cyclic. [5 marks]
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3. [Total mark:  25]

 Part A [Maximum mark:  13]

 (a) Use Kruskal’s algorithm to find a minimum spanning tree for the weighted graph 
shown below.  State the weight of the tree. [5 marks]
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 (b) For the travelling salesman problem defined by this graph, find

  (i) an upper bound;

  (ii) a lower bound. [8 marks]

 Part B [Maximum mark:  12]

 (a) Given that the integers  m  and  n  are such that 3 2 2( )m n+ , prove that 3 m   
and 3 n . [7 marks]

 (b) Hence show that 2  is irrational. [5 marks]
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4. [Total mark:  22]

 Part A [Maximum mark:  14]

 The function f x( )  is defined by the series f x x x x( ) ( ) ( ) ( ) ...= + +
×
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 (a) Write down the general term. [1 mark]

 (b) Find the interval of convergence. [13 marks]

 Part B [Maximum mark:  8]

 Solve the differential equation ( )u v v
u

v+ =3 23 d
d

, giving your answer in the form u f v= ( ) .

5. [Total mark:  26]

 Part A [Maximum mark:  8]

Prove that the interior bisectors of two of the angles of a non-isosceles triangle  
and the exterior bisector of the third angle, meet the sides of the triangle in three 
collinear points.

 Part B [Maximum mark:  18]

 (a) An equilateral triangle QRT is inscribed in a circle.  If S is any point on the  
arc QR of the circle, 

  (i) prove that ST SQ SR= + ;

  (ii) show that triangle RST is similar to triangle PSQ where P is the intersection 
of [TS] and [QR];

  (iii) using your results from parts (i) and (ii) deduce that 1 1 1
SP SQ SR

= + . [10 marks]

 (b) Perpendiculars are drawn from a point P on the circumcircle of triangle LMN to 
the three sides.  The perpendiculars meet the sides [LM], [MN] and [LN] at the 
points E, F and G respectively.

  Prove that PL PF PM PG× = × . [8 marks]


