

FURTHER MATHEMATICS STANDARD LEVEL PAPER 1

Thursday 14 May 2009 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

[2 marks]

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. All students should therefore be advised to show their working.

1. [Maximum mark: 11]

The relation R is defined on the set \mathbb{Z} by aRb if and only if 4a+b=5n, where $a, b, n \in \mathbb{Z}$.

- (a) Show that *R* is an equivalence relation. [8 marks]
- (b) State the equivalence classes of R. [3 marks]

2. [Maximum mark: 6]

The random variable X has a Poisson distribution. Given that P(X > 2) = 0.6, find

- (a) the mean of the distribution; [4 marks]
- (b) the mode of the distribution.

3. [Maximum mark: 8]

Triangle ABC has points D, E and F on sides [BC], [CA] and [AB] respectively; [AD], [BE] and [CF] intersect at the point P. If 3BD = 2DC and CE = 4EA, calculate the ratios

- (a) AF:FB; [4 marks]
- (b) AP:PD. [4 marks]

4. [*Maximum mark:* 6]

Prove that 3k + 2 and 5k + 3, $k \in \mathbb{Z}$ are relatively prime.

5. [Maximum mark: 8]

A circle has radius R cm where R is uniformly distributed on the interval [1, 4].

- (a) Find an expression for $F(r), r \in [1, 4]$, where F is the cumulative distribution function of R. [3 marks]
- (b) The area of the circle is $A \text{ cm}^2$. Show that, for $a \in [\pi, 16\pi]$,

$$P(A \le a) = \frac{1}{3} \left(\sqrt{\frac{a}{\pi}} - 1 \right).$$
 [3 marks]

(c) Deduce the probability density function of A in the interval $[\pi, 16\pi]$. [2 marks]

6. [Maximum mark: 21]

(a) Find the value of
$$\sum_{n=1}^{\infty} \frac{3}{9n^2 + 3n - 2}$$
. [6 marks]

(b) (i) Sum the series
$$\sum_{r=0}^{\infty} x^r$$
.

(ii) Hence, using sigma notation, deduce a series for

(a)
$$\frac{1}{1+x^2}$$
;

(b) $\arctan x$;

(c)
$$\frac{\pi}{6}$$
. [11 marks]

(c) Show that
$$\sum_{n=1}^{100} n! \equiv 3 \pmod{15}$$
. [4 marks]