

International Baccalaureate[®] Baccalauréat International Bachillerato Internacional

FURTHER MATHEMATICS STANDARD LEVEL PAPER 2

Tuesday 20 May 2008 (morning)

2 hours

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. All students should therefore be advised to show their working.

1. [Total mark: 21]

Part A [Maximum mark: 10]

The graph G has the following cost adjacency matrix.

	A	В	С	D	Е	F
А	_	2	_	_	_	9
В	2	_	6	_	_	3
С	-	6	_	7	3	2
D	-	_	7	_	1	_
Е	_	_	3	1	_	7
F	9	3	2	_	7	_

(a) Draw *G* in planar form.

(b) Use Dijkstra's Algorithm to find the shortest path between the vertices A and D. Show all the steps in the algorithm and state the length of the shortest path. [8 marks]

Part B [Maximum mark: 11]

(a) Given that $ax \equiv b \pmod{p}$ where $a, b, p, x \in \mathbb{Z}^+$, p is prime and a is not a multiple of p, use Fermat's little theorem to show that

$$x \equiv a^{p-2}b \pmod{p}.$$
 [3 marks]

(b) Hence solve the simultaneous linear congruences

$$3x \equiv 4 \pmod{5}$$
$$5x \equiv 6 \pmod{7}$$

giving your answer in the form $x \equiv c \pmod{d}$. [8 marks]

[2 marks]

2. [Total mark: 28]

Part A [Maximum mark: 18]

The function f is defined by $f(x) = \ln(1 + \sin x)$.

(a) Show that
$$f''(x) = \frac{-1}{1 + \sin x}$$
. [4 marks]

- 3 -

- (b) Determine the Maclaurin series for f(x) as far as the term in x^4 . [6 marks]
- (c) Deduce the Maclaurin series for $\ln(1-\sin x)$ as far as the term in x^4 . [2 marks]

(d) By combining your two series, show that
$$\ln \sec x = \frac{x^2}{2} + \frac{x^4}{12} + \dots$$
 [4 marks]

(e) Hence, or otherwise, find
$$\lim_{x \to 0} \frac{\ln \sec x}{x\sqrt{x}}$$
. [2 marks]

Part B [Maximum mark: 10]

When a scientist measures the concentration μ of a solution, the measurement obtained may be assumed to be a normally distributed random variable with mean μ and standard deviation 1.6.

(a) He makes 5 independent measurements of the concentration of a particular solution and correctly calculates the following confidence interval for μ .

Determine the confidence level of this interval.

(b) He is now given a different solution and is asked to determine a 95% confidence interval for its concentration. The confidence interval is required to have a width less than 2. Find the minimum number of independent measurements required. [5 marks]

[5 marks]

3. [Maximum mark: 20]

- (a) The diagram shows the line *l* meeting the sides of the triangle ABC at the points D, E and F. The perpendiculars to *l* from A, B and C meet *l* at G, H and I.
 - (i) State why $\frac{AF}{FB} = \frac{AG}{HB}$.
 - (ii) Hence prove Menelaus' theorem for the triangle ABC.
 - (iii) State and prove the converse of Menelaus' theorem. [13 mc
- (b) A straight line meets the sides (PQ), (QR), (RS), (SP) of a quadrilateral PQRS at the points U, V, W, X respectively. Use Menelaus' theorem to show that

$$\frac{PU}{UQ} \times \frac{QV}{VR} \times \frac{RW}{WS} \times \frac{SX}{XP} = 1.$$
 [7 marks]

[13 marks]

4. [Total mark: 26]

Part A [Maximum mark: 14]

- (a) The relation R_1 is defined for $a, b \in \mathbb{Z}^+$ by aR_1b if and only if $n|(a^2 b^2)$ where n is a fixed positive integer.
 - (i) Show that R_1 is an equivalence relation.
 - (ii) Determine the equivalence classes when n = 8. [11 marks]
- (b) The relation R_2 is defined for $a, b \in \mathbb{Z}^+$ by aR_2b if and only if (4+|a-b|) is the square of a positive integer. Show that R_2 is not transitive. [3 marks]

Part B [Maximum mark: 12]

Consider the group $\{G, *\}$ and let *H* be a subset of *G* defined by

$$H = \{x \in G \text{ such that } x * a = a * x \text{ for all } a \in G\}$$

Show that $\{H, *\}$ is a subgroup of $\{G, *\}$.

5. [Maximum mark: 12]

(a) The independent random variables X and Y have Poisson distributions and Z = X + Y. The means of X and Y are λ and μ respectively. By using the identity

$$P(Z = n) = \sum_{k=0}^{n} P(X = k) P(Y = n - k)$$

show that *Z* has a Poisson distribution with mean $(\lambda + \mu)$.

(b) Given that $U_1, U_2, U_3, ...$ are independent Poisson random variables each having mean *m*, use mathematical induction together with the result in (a) to show that $\sum_{r=1}^{n} U_r$ has a Poisson distribution with mean *nm*. [6 marks]

2208-7102

[6 marks]

[3 marks]

[Maximum mark: 13] 6.

Let
$$S_n = \sum_{k=1}^n \frac{1}{k}$$
.

(a) Show that, for
$$n \ge 2$$
, $S_{2n} > S_n + \frac{1}{2}$. [3 marks]

(b) Deduce that
$$S_{2^{m+1}} > S_2 + \frac{m}{2}$$
. [7 marks]

(c) Hence show that the sequence
$$\{S_n\}$$
 is divergent.

2208-7102