

IB DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI

FURTHER MATHEMATICS STANDARD LEVEL PAPER 1

Monday 15 May 2006 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

M06/5/FURMA/SP1/ENG/TZ0/XX

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. All students should therefore be advised to show their working.

-2-

1. [Maximum mark: 9]

The general term of a sequence is given by the formula $a_n = \frac{n^2 + 3n}{2n^2 - 1}$, $n \in \mathbb{Z}^+$.

- (a) Given that $\lim_{n \to \infty} a_n = L$, where $L \in \mathbb{R}$, find the value of L. [3 marks]
- (b) Find the smallest value of $N \in \mathbb{Z}^+$ such that $|a_n L| < 10^{-3}$ for all $n \ge N$. [6 marks]
- 2. [Maximum mark: 7]

The following diagram shows a circle, centre O, and a point T outside the circle. Tangents [TL] and [TM] are drawn to touch the circle at L and M. Let P be any point on the smaller arc LM. The tangent to the circle at P meets [TL] and [TM] at the points A and B respectively.

As P moves around the smaller arc LM, show that AÔB remains constant.

[7 marks]

3. [*Maximum mark:* 9]

4.

(a)	Convert the base 5 number 2341 to a decimal number.	[3 marks]
(b)	Show that any number written in base 5 is divisible by 2 if the sum of its digits is divisible by 2.	[6 marks]
[Ma	ximum mark: 11]	

- 3 -

The function $f: \mathbb{Z}^+ \to \mathbb{Z}^+$ is defined by $f(x) = \gcd(x, 6)$.

- (a) Find the range of the function *f*. [3 marks]
- (b) Show that the function f is periodic and find its period. [3 marks]
- (c) Find the set of positive integers satisfying f(x) = 2. [5 marks]

5. [Maximum mark: 12]

The function f is defined by $f(x) = \begin{cases} 0.005 e^{-0.005x}, & x \ge 0\\ 0, & x < 0 \end{cases}$

- (a) Show that the function f is a probability density function.
- (b) While testing the lifetime of light bulbs, in a sample of 150 light bulbs, the following frequency distribution is obtained.

lifetime (hours)	[0, 100[[100, 200[[200, 300[[300, +∞[
number of light bulbs	47	40	35	28

Use a χ^2 test at the 5 % significance level to determine whether or not the probability distribution defined by f is an appropriate model for the data.

[8 marks]

[4 marks]

6. [Maximum mark: 12]

Consider the differential equation $\frac{dy}{dx} = \frac{3x^2 + y^2}{xy}$ where x, y > 0.

(a)	Show that the differential equation is homogeneous.	[2 marks]
(b)	Find the general solution of the differential equation, giving your answer in the form $v^2 = f(x)$.	[7 marks]

(c) Solve the differential equation, given that y = 2 when x = 1. [3 marks]