

Further mathematics Higher level Paper 1

Thursday 17 May 2018 (afternoon)

2 hours 30 minutes

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the **mathematics HL and further mathematics HL formula booklet** is required for this paper.
- The maximum mark for this examination paper is [150 marks].

X

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 9]

- (a) Use the Euclidean algorithm to find the greatest common divisor of 74 and 383. [4]
- (b) Hence find integers s and t such that 74s + 383t = 1. [5]

2. [Maximum mark: 6]

Let $A^2 = 2A + I$ where A is a 2×2 matrix.

(a) Show that $A^4 = 12A + 5I$. [3]

Let
$$\boldsymbol{B} = \begin{bmatrix} 4 & 2 \\ 1 & -3 \end{bmatrix}$$
.
(b) Civen that $\boldsymbol{B}^2 = \boldsymbol{B} = 4\boldsymbol{I} = \begin{bmatrix} k & 0 \end{bmatrix}$ find the value of k .

(b) Given that
$$\mathbf{B}^2 - \mathbf{B} - 4\mathbf{I} = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$$
, find the value of k. [3]

3. [Maximum mark: 7]

(a) A number written in base 5 is 4303. Find this as a number written in base 10. [2]

(b) 1000 is a number written in base 10. Find this as a number written in base 7. [5]

4. [Maximum mark: 12]

The transformations T_1, T_2, T_3, T_4 , in the plane are defined as follows:

- T_1 : A rotation of 360° about the origin
- T_2 : An anticlockwise rotation of 270° about the origin
- $T_{\rm 3} {:}~{\rm A}$ rotation of 180° about the origin
- T_4 : An anticlockwise rotation of 90° about the origin.
- (a) Copy and complete the following Cayley table for the transformations of T_1 , T_2 , T_3 , T_4 , under the operation of composition of transformations.

_	T_1	T_2	T_3	T_4
T_1	T_1	T_2	T_3	T_4
T_2	T_2			
T_3	T_3			
T_4	T_4			

- (b) (i) Show that T_1, T_2, T_3, T_4 under the operation of composition of transformations form a group. Associativity may be assumed.
 - (ii) Show that this group is cyclic.

The transformation T_5 is defined as a reflection in the *x*-axis.

- (c) Write down the 2 × 2 matrices representing T_3 , T_4 and T_5 . [3]
- (d) The transformation T is defined as the composition of T_3 followed by T_5 followed by T_4 .
 - (i) Find the 2×2 matrix representing *T*.
 - (ii) Give a geometric description of the transformation T. [3]
- 5. [Maximum mark: 7]

Use the integral test to determine whether or not $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$ converges. [7]

[2]

[4]

6. [Maximum mark: 9]

- (a) Consider the integers between 1 and 20 inclusive. Let $A = \{$ multiples of 2 $\}, B = \{$ multiples of 3 $\}, C = \{$ multiples of 4 $\}$. Find the elements in each of the following sets,
 - (i) $A \cap (B \cup C)$;
 - (ii) $A \setminus (B \setminus C)$. [5]
- (b) Let $M = \{x : x \text{ is an integer multiple of 10}\}$ and let $N = \{x : x \text{ is an integer multiple of 5}\}$ Prove that M is a proper subset of N. [4]
- 7. [Maximum mark: 9]

A sample of size 100 is taken from a normal population with unknown mean μ and known variance 36.

(a) An investigator wishes to test the hypotheses $H_0: \mu = 65, H_1: \mu > 65$.

He decides on the following acceptance criteria: Accept H_0 if the sample mean $\overline{x} \le 66.5$ Accept H_1 if $\overline{x} > 66.5$

Find the probability of a Type I error.

- (b) Another investigator decides to use the same data to test the hypotheses $H_0: \mu = 65, H_1: \mu = 67.9$.
 - (i) She decides to use the same acceptance criteria as the previous investigator. Find the probability of a Type II error.
 - (ii) Find the critical value for \overline{x} if she wants the probabilities of a Type I error and a Type II error to be equal.

[3]

[6]

8. [Maximum mark: 13]

Consider the simultaneous linear equations

$$x + z = -1$$

$$3x + y + 2z = 1$$

$$2x + ay - z = b$$

where a and b are constants.

- (a) Using row reduction, find the solutions in terms of *a* and *b* when $a \neq 3$. [8]
- (b) Explain why the equations have no unique solution when a = 3. [1]
- (c) Find all the solutions to the equations when a = 3, b = 10 in the form $r = s + \lambda t$. [4]
- **9.** [Maximum mark: 13]
 - (a) Given that A is the interval $\{x : 0 \le x \le 3\}$ and B is the interval $\{y : 0 \le y \le 4\}$ then describe $A \times B$ in geometric form. [3]
 - (b) Let $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ be defined by f(x, y) = (x + 3y, 2x y).
 - (i) Show that the function f is a bijection.
 - (ii) Hence find the inverse function f^{-1} .

10. [Maximum mark: 12]

- (a) By considering the images of the points (1, 0) and (0, 1),
 - (i) determine the 2 × 2 matrix P which represents a reflection in the line $y = (\tan \theta)x$;
 - (ii) determine the 2×2 matrix Q which represents an anticlockwise rotation of θ about the origin. [5]
- (b) Describe the transformation represented by the matrix *PQ*. [5]
- (c) A matrix M is said to be orthogonal if $M^T M = I$ where I is the identity. Show that Q is orthogonal. [2]

[10]

[2]

[3]

[2]

11. [Maximum mark: 12]

Given that *y* is a function of *x*, the function *z* is given by $z = \frac{y-x}{y+x}$, where $x \in \mathbb{R}$, $x \neq 3$, $y + x \neq 0$.

(a) Show that
$$\frac{dz}{dx} = \frac{2}{(y+x)^2} \left(x \frac{dy}{dx} - y \right).$$
 [3]

(b) Show that the differential equation $f(x)\left(x\frac{dy}{dx}-y\right) = y^2 - x^2$ can be written as $f(x)\frac{dz}{dx} = 2z$.

(c) Hence show that the solution to the differential equation $(x-3)\left(x\frac{dy}{dx}-y\right) = y^2 - x^2$ given that x = 4 when y = 5 is $\frac{y-x}{y+x} = \left(\frac{x-3}{3}\right)^2$. [7]

- **12.** [Maximum mark: 15]
 - (a) Solve the recurrence relation $u_n = 4u_{n-1} 4u_{n-2}$ given that $u_0 = u_1 = 1$. [6]

Consider v_n which satisfies the recurrence relation $2v_n = 7v_{n-1} - 3v_{n-2}$ subject to the initial conditions $v_0 = v_1 = 1$.

- (b) Prove by using strong induction that $v_n = \frac{4}{5} \left(\frac{1}{2}\right)^n + \frac{1}{5} (3)^n$ for $n \in \mathbb{N}$. [9]
- 13. [Maximum mark: 9]

Consider the matrix $\boldsymbol{M} = \begin{bmatrix} 2 & -4 \\ -1 & -1 \end{bmatrix}$.

- (a) Show that the linear transformation represented by M transforms any point on the line y = x to a point on the same line. [2]
- (b) Explain what happens to points on the line 4y + x = 0 when they are transformed by M.
- (c) State the two eigenvalues of M.
- (d) State two eigenvectors of M which correspond to the two eigenvalues. [2]

[4]

14. [Maximum mark: 8]

At an early stage in analysing the marks scored by candidates in an examination paper, the examining board takes a random sample of 250 candidates and finds that the marks, x, of these candidates give $\sum x = 10985$ and $\sum x^2 = 598736$.

- (a) Calculate a 90% confidence interval for the population mean mark μ for this paper. [4]
- (b) The null hypothesis $\mu = 46.5$ is tested against the alternative hypothesis $\mu < 46.5$ at the λ % significance level. Determine the set of values of λ for which the null hypothesis is rejected in favour of the alternative hypothesis.
- **15.** [Maximum mark: 9]

Given that the tangents at the points P and Q on the parabola $y^2 = 4ax$ are perpendicular, find the locus of the midpoint of PQ. [9]