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Full marks are not necessarily awarded for a correct answer with no working.  Answers must be 
supported by working and/or explanations.  In particular, solutions found from a graphic display  
calculator should be supported by suitable working.  For example, if graphs are used to find a solution, 
you should sketch these as part of your answer.  Where an answer is incorrect, some marks may be 
given for a correct method, provided this is shown by written working.  You are therefore advised to  
show all working.

[4]

[5]

1. [Maximum mark:  9]

(a) Use the Euclidean algorithm to find the greatest common divisor of 74 and 383.

(b) Hence find integers  s  and  t  such that  74s + 383t = 1 .

2. [Maximum mark:  6]

Let  A2 = 2A + I  where  A  is a  2 × 2  matrix.

(a) Show that  A4 = 12A + 5I . [3]

 Let B =
−
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1 3
.

(b)
k
k
0

0
=








 , find the value of  k . [3]

3. [Maximum mark:  7]

(a) A number written in base 5 is 4303.  Find this as a number written in base 10. [2]

(b) 1000 is a number written in base 10.  Find this as a number written in base 7. [5]
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4. [Maximum mark:  12]

The transformations  T1 , T2 , T3 , T4 ,  in the plane are defined as follows:

T1 : A rotation of  360  about the origin
T2 : An anticlockwise rotation of  270  about the origin
T3 : A rotation of  180  about the origin
T4 : An anticlockwise rotation of  90  about the origin.

 (a) Copy and complete the following Cayley table for the transformations of  T1 , T2 , T3 , T4 ,  
under the operation of composition of transformations.

T1 T2 T3 T4

T1 T1 T2 T3 T4

T2 T2

T3 T3

T4 T4 [2]

 (b) (i) Show that  T1 , T2 , T3 , T4  under the operation of composition of transformations 
form a group.  Associativity may be assumed.

  (ii) Show that this group is cyclic. [4]

The transformation  T5  is defined as a reflection in the  x-axis.

 (c) Write down the  2 × 2  matrices representing  T3 , T4  and  T5 . [3]

 (d) The transformation  T  is defined as the composition of  T3  followed by  T5  followed 
by  T4 .

  (i) Find the  2 × 2  matrix representing  T .

  (ii) Give a geometric description of the transformation  T . [3]

5. [Maximum mark:  7]

 Use the integral test to determine whether or not 
1

2

2 n nn ln( )=

∞

∑  converges. [7]

Turn over
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6. [Maximum mark:  9]

 (a) Consider the integers between 1 and 20 inclusive.
  Let  A = {multiples of 2} , B = {multiples of 3} , C = {multiples of 4} .
  Find the elements in each of the following sets,

  (i) A ∩ (B ∪ C) ;

  (ii) A \ (B \ C) . [5]

 (b) Let  M = {x : x  is an integer multiple of 10}  and let  N = {x : x  is an integer multiple of 5}
Prove that  M  is a proper subset of  N . [4]

7. [Maximum mark:  9]

A sample of size 100 is taken from a normal population with unknown mean  µ  and known 
variance 36.

 (a) An investigator wishes to test the hypotheses  H0 : µ = 65 , H1 : µ > 65 .

  He decides on the following acceptance criteria:
Accept  H0  if the sample mean x  ≤ 66.5
Accept  H1  if x  > 66.5

Find the probability of a Type I error. [3]

 (b) Another investigator decides to use the same data to test the hypotheses 
H0 : µ = 65 , H1 : µ = 67.9 .

  (i) She decides to use the same acceptance criteria as the previous investigator.  
Find the probability of a Type II error.

  (ii) Find the critical value for x  if she wants the probabilities of a Type I error and a 
Type II error to be equal. [6]
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8. [Maximum mark:  13]

Consider the simultaneous linear equations
x + z = - 1
3x + y + 2z = 1
2x + ay - z = b

where  a  and  b  are constants.

(a) Using row reduction, find the solutions in terms of  a  and  b  when  a ≠ 3 . [8]

(b) Explain why the equations have no unique solution when  a = 3 . [1]

(c) Find all the solutions to the equations when  a = 3 , b = 10  in the form  r = s + λt . [4]

[3]

[10]

[5]

[5]

9. [Maximum mark:  13]

(a) Given that  A  is the interval  {x : 0 ≤ x ≤ 3}  and  B  is the interval  {y : 0 ≤ y ≤ 4}  then 
describe  A × B  in geometric form.

(b) Let  f :  ×  →  ×   be defined by  f (x , y) = (x + 3y , 2x - y) .

(i) Show that the function  f  is a bijection.

(ii) Hence find the inverse function  f -1 .

10. [Maximum mark:  12]

(a) By considering the images of the points (1, 0) and (0, 1),

(i) determine the  2 × 2  matrix  P  which represents a reflection in the line
y = (tan θ)x ;

(ii) determine the  2 × 2  matrix Q  which represents an anticlockwise rotation of  θ 
about the origin.

(b) Describe the transformation represented by the matrix  PQ .

(c) A matrix  M  is said to be orthogonal if  M TM = I  where  I  is the identity.  Show that  Q  is 
orthogonal. [2]

Turn over
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11. [Maximum mark:  12]

Given that  y  is a function of  x , the function  z  is given by z
y x
y x

=
−
+

, where  x ∈  , x ≠ 3 , 
y + x ≠ 0 .

(a) Show that
d

d

d

d

z
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x y
x
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+( )
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2

2 . [3]

(b) Show that the differential equation f x x y
x
y y x( )

d

d
−






 = −2 2  can be written as 

f x z
x

z( )
d

d
= 2 . [2]

(c) Hence show that the solution to the differential equation ( )x x y
x
y y x− −






 = −3

2 2d

d

given that  x = 4  when  y = 5  is 
y x
y x

x−
+

=
−







3

3

2

. [7]

12. [Maximum mark:  15]

(a) Solve the recurrence relation  un = 4un-1 - 4un-2  given that  u0 = u1 = 1 . [6]

Consider  vn  which satisfies the recurrence relation  2vn = 7vn-1 - 3vn-2  subject to the initial 
conditions  v0 = v1 = 1 .

(b) Prove by using strong induction that vn
n

n= 





 +

4

5

1

2

1

5
3( ) for  n ∈  . [9]

13. [Maximum mark:  9]

Consider the matrix M =
−

− −










2 4

1 1
.

[2]

[3]

[2]

(a) Show that the linear transformation represented by  M  transforms any point on the line 
y = x  to a point on the same line.

(b) Explain what happens to points on the line  4y + x = 0  when they are transformed
by  M .

(c) State the two eigenvalues of  M .

(d) State two eigenvectors of  M  which correspond to the two eigenvalues. [2]
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14. [Maximum mark:  8]

At an early stage in analysing the marks scored by candidates in an examination paper,  
the examining board takes a random sample of 250 candidates and finds that the marks,  x , 
of these candidates give x =∑ 10985  and x2 598736=∑ .

 (a) Calculate a 90% confidence interval for the population mean mark  µ  for this paper. [4]

 (b) The null hypothesis  µ = 46.5  is tested against the alternative hypothesis  µ < 46.5  
at the  λ%  significance level.  Determine the set of values of  λ  for which the null 
hypothesis is rejected in favour of the alternative hypothesis. [4]

15. [Maximum mark:  9]

 Given that the tangents at the points P and Q on the parabola  y2 = 4ax  are perpendicular, 
find the locus of the midpoint of PQ. [9]
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