

Markscheme

May 2018

Physics

Standard level

Paper 3

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

Q	Question		Answers	Notes	Total
1.	а		distance fallen = $654-12=642$ «mm» \checkmark absolute uncertainty = $2+0.1$ «mm» $\approx 2\times10^{-3}$ «m» or = 2.1×10^{-3} «m» or = 2.0×10^{-3} «m» \checkmark	Accept answers in mm or m	2
1.	b		$ \text{ fractional uncertainty in distance} = \frac{2}{642} \text{ AND fractional uncertainty in time} = \frac{0.002}{0.363} \checkmark $ total fractional uncertainty = $\frac{\Delta s}{s} + 2\frac{\Delta t}{t} \ll 0.00311 + 2 \times 0.00551 \checkmark $ total absolute uncertainty = 0.1 or 0.14 AND same number of decimal places in value and uncertainty, $ie: 9.7 \pm 0.1 \text{ or } 9.74 \pm 0.14 \checkmark $	Accept working in % for MP2 and MP3 Final uncertainty must be the absolute uncertainty	4

Q	uestic	on	Answers	Notes	Total
2.	а		combines the two equations to obtain result «for example $\frac{1}{I} = K^2 (C + x)^2 = \frac{4\pi}{P} (C + x)^2$ » \checkmark OR reverse engineered solution – substitute $K = 2\sqrt{\frac{\pi}{P}}$ into $\frac{1}{I} = K^2 (C + x)^2$ to get $I = \frac{P}{4\pi (C + x)^2}$ \checkmark	There are many ways to answer the question, look for a combination of two equations to obtain the third one	1
2.	b	i	extrapolating line to cross x -axis / use of x -intercept OR Use $C = \frac{y\text{-intercept}}{\text{gradient}}$ OR use of gradient and one point, correctly substituted in one of the formulae \checkmark accept answers between 3.0 and 4.5 «cm» \checkmark	Award [1 max] for negative answers	2

(Question 2 continued)

(Question		Answers	Notes	Total
2.	b	ii	ALTERNATIVE 1		
			Evidence of finding gradient using two points on the line at least 10 cm apart ✓		
			Gradient found in range: 115–135 <i>or</i> 1.15–1.35 ✓		
			Using $P = \frac{4\pi}{\kappa^2}$ to get value between 6.9×10^{-4} and 9.5×10^{-4} «W»		
			and POT correct ✓		
			Correct unit, W and answer to 1, 2 or 3 significant figures ✓	Award [3 max] for an answer between 6.9W and 9.5W (POT penalized in 3rd marking point)	4
			ALTERNATIVE 2	Alternative 2 is worth [3 max]	
			Finds $I\left(\frac{1}{y^2}\right)$ from use of one point (x and y) on the line with		
			$x > 6$ cm and C from (b)(i) to use in $I = \frac{P}{4\pi (C + x)^2}$ or		
			$\frac{1}{\sqrt{I}} = Kx + KC \checkmark$		
			Correct re-arrangement to get <i>P</i> between 6.9×10 ⁻⁴ and 9.5×10 ⁻⁴ «W» and POT correct ✓		
			Correct unit, W and answer to 1, 2 or 3 significant figures ✓		

(Question 2 continued)

Question		Answers	Notes	Total
2.	С	this graph will be a curve / not be a straight line ✓		
			OWTTE	
		more difficult to determine value of K		
		OR		2
		more difficult to determine value of C		
		OR		
		suitable mathematical argument ✓		

Section B

Option A — Relativity

Q	uestic	on	Answers	Notes	Total
3.	а	i	1.25c ✓		1
3.	а	ii	ALTERNATIVE 1		
			$u' = \frac{(0.50 + 0.75)}{1 + 0.5 \times 0.75} c \checkmark$		
			0.91 <i>c</i> ✓		
			ALTERNATIVE 2		2
			$u' = \frac{-0.50 - 0.75}{1 - (-0.5 \times 0.75)}c \checkmark$		
			-0.91 <i>c</i> ✓		
3.	b		nothing can travel faster than the speed of light (therefore (a)(ii) is the valid answer) ✓	OWTTE	1

C	Question	Answers	Notes	Total
4.	а	0.60c OR 1.8×10 ⁸ «m s ⁻¹ » \checkmark		1
4.	b	time interval in the Earth frame = $90 \times \gamma = 112.5$ minutes \checkmark «in Earth frame it takes 112.5 minutes for ship to reach station» so distance = $112.5 \times 60 \times 0.60c$ \checkmark 1.2×10^{12} «m» \checkmark ALTERNATIVE 2 Distance travelled according in the spaceship frame = $90 \times 60 \times 0.6c$ \checkmark		3
		= 9.72×10 ¹¹ «m» \checkmark Distance in the Earth frame «= 9.72×10 ¹¹ ×1.25» = 1.2×10 ¹² «m» \checkmark		

(Question 4 continued)

C	Question		Answers	Notes	Total
4.	С		signal will take $<1.2.5 \times 0.60 = $ 67.5 <a hre<="" th=""><th></th><th>2</th>		2
4.	d	i	line from event E to A, upward and to left with A on <i>ct</i> axis (approx correct) ✓ line from event A to B, upward and to right with B on <i>ct'</i> axis (approx correct) ✓ both lines drawn with ruler at 45 (judge by eye) ✓	Earth 0 space station	3

(Question 4 continued)

Q	uesti	on	Answers	Notes	Total
4.	d	ii	ALTERNATIVE 1 «In spaceship frame» Finds the ratio $\frac{OB}{OE}$ (or by similar triangles on x or ct axes), value is approximately 4 ✓ hence time elapsed ≈ 4×90mins ≈ 6h «so clock time is ≈6:00» ✓	Alternative 1: Alternative 1: Allow similar triangles using x-axis or ct-axis, such as distance 2 distance 1 from diagrams below	2

(Question 4 continued)

C	Question		Answers	Notes	Total
4.	d	ii		distance 2 distance 1 Earth 0 space station A distance 1 Earth 0 space station Earth 0 space station	
			ALTERNATIVE 2 «In Earth frame» Finds the ratio $\frac{ct}{ct}$ coordinate of B $\frac{ct}{ct}$ coordinate of A approximately 2.5 ✓ hence time elapsed $\approx \frac{2.5 \times 3h}{1.25} \approx 6h$ «so clock time is $\approx 6:00$ » ✓	at coordinate of B ct coordinate of A Earth of space station space station	

Q	uesti	on	Answers	Notes	Total
5.	а		quantity that is the same/constant in all inertial frames ✓		1
5.	b	i	spacetime interval = 27 ² −15 ² = 504 «m ² » ✓		1
5.	b	ii	ALTERNATIVE 1 Evidence of $x' = 0$ \checkmark $t' \ll \frac{\sqrt{504}}{c} = 7.5 \times 10^{-8} \ll s $ \checkmark ALTERNATIVE 2 $\gamma = 1.2 \checkmark$ $t' \ll \frac{9 \times 10^{-8}}{1.2} = 7.5 \times 10^{-8} \ll s $ \checkmark		2
5.	С		observer B measures the proper time and this is the shortest time measured OR time dilation occurs «for B's journey» according to A OR observer B is stationary relative to the particle, observer A is not ✓		1

Option B — Engineering physics

Q	uestic	on	Answers	Notes	Total
6.	а	i	an object's resistance to change in rotational motion OR equivalent of mass in rotational equations ✓	OWTTE	1
6.	а	ii	Δ KE + Δ rotational KE = Δ GPE OR $\frac{1}{2}mv^2 + \frac{1}{2}I\frac{v^2}{r^2} = mgh$ ✓ $\frac{1}{2} \times 0.250 \times v^2 + \frac{1}{2} \times 1.3 \times 10^{-4} \times \frac{v^2}{1.44 \times 10^{-4}} = 0.250 \times 9.81 \times 0.36$ ✓ $v = 1.2 \text{ « m s}^{-1}$ » ✓		3
6.	а	iii	$\omega = \frac{1.2}{0.012}$ = 100 « rad s ⁻¹ » \checkmark		1
6.	b	i	force in direction of motion ✓ so linear speed increases ✓		2
6.	b	ii	force gives rise to anticlockwise/opposing torque on wheel ✓ so angular speed decreases ✓	OWTTE	2

Q	uestic	on	Answers	Notes	Total
7.	а		ALTERNATIVE 1 «Using $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ » $V_2 = \frac{47.1 \times (273 + 19)}{(273 - 12)} \checkmark$ $V_2 = 52.7 \text{ cm}^3$ » \checkmark ALTERNATIVE 2 «Using $PV = nRT$ » $V = \frac{243 \times 8.31 \times (273 + 19)}{11.2 \times 10^3} \checkmark$ $V = 52.6 \text{ cm}^3$ » \checkmark		2
7.	b		$W = P\Delta V = 11.2 \times 10^3 \times (52.7 - 47.1)$ \checkmark $W = 62.7 \times 10^3 \text{ «J» }\checkmark$	Accept 66.1×10^3 J if 53 used Accept 61.6×10^3 J if 52.6 used	2
7.	С		$\Delta U = \frac{3}{2} nR\Delta T = 1.5 \times 243 \times 8.31 \times (19 - (-12)) = 9.39 \times 10^{4} \checkmark$ $Q = \Delta U + W = 9.39 \times 10^{4} + 6.27 \times 10^{4} \checkmark$ $Q = 1.57 \times 10^{5} \text{ «J» } \checkmark$	Accept 1.60×10^5 if 66.1×10^3 J used Accept 1.55×10^5 if 61.6×10^3 J used	3

(Question 7 continued)

C	uesti	on	Answers	Notes	Total
7.	d	i	concave curve from RHS of present line to point above LHS of present line ✓ vertical line from previous curve to the beginning ✓		2
7.	d	ii	energy is removed from the gas and so entropy decreases OR temperature decreases «at constant volume (less disorder)» so entropy decreases ✓	OWTTE	1
7.	е		different paradigms/ways of thinking/modelling/views ✓ allows testing in different ways ✓ laws can be applied different situations ✓	OWTTE	1 max

Option C — Imaging

C	uesti	on	Answers	Notes	Total
8.	а	i	constructs ray parallel to principal axis and then to image position OR u=8cm and v=24cm and lens formula ✓ 6 «cm» ✓	eg: 2.0 cm converging lens Allow answers in the range of 5.6 to 6.4 cm	2
8.	а	ii	<i>m</i> =«-»3.0 ✓		1
8.	b		completes diagram with blue focal point closer to lens ✓ blue light/rays refracted/deviated more OR speed of blue light is less than speed of red light ✓ OR different colors/wavelengths have different focal points/converge at different points ✓	First marking point can be explained in words or seen on diagram red light ray principal axis blue light ray converging glass lens	2

C	Questic	on	Answers	Notes	Total
9.	а		where the extensions of the reflected rays from the primary mirror would meet, with construction lines ✓	eg: primary mirror secondarly mirror X	1
9.	b		greater magnification ✓		1
9.	С		Newtonian mount has plane/not curved «secondary» mirror «secondary» mirror at angle/45° to axis eyepiece at side/at 90° to axis mount shown is Cassegrain ✓	OWTTE Accept these marking points in diagram form	2 max
9.	d		waves collected above mirror/dish ✓ waves collected at the focus of the mirror/dish ✓ waves detected by radio receiver/antenna ✓ waves converted to electrical signals ✓		1 max

Q	uestic	on	Answers	Notes	Total
10.	а		$\sin c = \frac{1.4444}{1.4475}$ or $\sin c = 0.9978$ \checkmark critical angle = 86.2 «°» \checkmark with cladding only rays travelling nearly parallel to fibre axis are transmitted OR pulse broadening/dispersion will be reduced \checkmark	OWTTE	3
10.	b	i	attenuation = $<10 \log \frac{I}{I_0}$ » = $10 \log \frac{2.0 \times 10^{-6}}{400 \times 10^{-6}}$ \checkmark attenuation = $<-$ »23 $B» \checkmark$	Accept $10 \log \frac{400}{2.0}$ for first marking point	2
10.	b	ii	185 × 0.200 = 37 loss over length of cable ✓ « $\frac{37-23}{12}$ = 1.17 » so two amplifiers are sufficient ✓		2
10.	b	iii	mention of material dispersion ✓ mention that rays become separated in time OR mention that ray A travels slower/arrives later than ray B ✓		2

(Question 10 continued)

Q	uesti	on	Answers	Notes	Total
10.	С		high bandwidth/data transfer rates ✓ low distortion/Low noise/Faithful reproduction ✓ high security ✓ fast «fibre» broadband/internet ✓ high quality optical audio ✓ medical endoscopy ✓	Allow any other verifiable sensible advantage	1 max
			medical endoscopy •		

Option D — Astrophysics

Q	Question		Answers	Notes	Total
11.	а		photon/fusion/radiation force/pressure balances gravitational force/pressure ✓ gives both directions correctly (outwards radiation, inwards gravity) ✓	OWTTE	2
11.	b		« $L \propto M^{3.5}$ for main sequence» luminosity of $P = 2.5$ «luminosity of the Sun» ✓		1
11.	С	i	$L_{Gacrux} = 5.67 \times 10^{-8} \times 4\pi \times (58.5 \times 10^{9})^{2} \times 3600^{4} \checkmark$ $L_{Gacrux} = 4.1 \times 10^{29} \text{ w W } \checkmark$ $\frac{L_{Gacrux}}{L_{\odot}} \text{ w} = \frac{4.1 \times 10^{29}}{3.85 \times 10^{26}} \text{ w} = 1.1 \times 10^{3} \checkmark$		3
11.	С	ii	if the star is too far then the parallax angle is too small to be measured <i>OR</i> stellar parallax is limited to closer stars ✓	OWTTE	1

(Question 11 continued)

Q	uesti	on	Answers	Notes	Total
11.	d	i	line or area roughly inside shape shown – judge by eye ✓	Accept straight line or straight area at roughly 45°	1
11.	d	ii	P between 1 L_{\odot} and 10 ¹ L_{\odot} on main sequence drawn \checkmark		1

(Question 11 continued)

C	uesti	on	Answers	Notes	Total
11.	d	iii	at 10 ³ L _☉ , further to right than 5000 K and to the left of 2500 K (see shaded region)✓	10° 10° 10° 10° 10° 10° 10° 10° 10° 10°	1

(Question 11 continued)

Q	uestion	Answers	Notes	Total
11.	е	ALTERNATIVE 1		
		Main sequence to red giant ✓		
		planetary nebula with mass reduction/loss		
		OR	OWTTE for both alternatives	
		planetary nebula with mention of remnant mass ✓		
		white dwarf ✓		
		ALTERNATIVE 2		
		Main sequence to red supergiant region ✓		3
		Supernova with mass reduction/loss		
		OR		
		Supernova with mention of remnant mass ✓		
		neutron star		
		OR		
		Black hole ✓		

Q	uestic	on	Answers	Notes	Total
12.	а		use of gradient or any coordinate pair to find H_0 «= $\frac{v}{d}$ » or $\frac{1}{H_0}$ «= $\frac{d}{v}$ » \checkmark convert Mpc to m and km to m «for example $\frac{82 \times 10^3}{10^6 \times 3.26 \times 9.46 \times 10^{15}}$ » \checkmark age of universe «= $\frac{1}{H_0}$ » = 3.8×10^{17} «s» \checkmark	Allow final answers between 3.7×10 ¹⁷ and 3.9×10 ¹⁷ «s» or 4×10 ¹⁷ «s»	3
12.	b		non-accelerated/uniform rate of expansion \mathbf{OR} H_0 constant over time \checkmark	OWTTE	1
12.	С		$z = \frac{v}{c} = \frac{4.6 \times 10^4 \times 10^3}{3.00 \times 10^8} = 0.15$ $\frac{R}{R_0} = ext{2 + 1} = 1.15$ $\frac{R_0}{R} = ext{3 + 1} = 0.87$ OR 87 % of the present size $ext{4}$		3