

Markscheme

May 2018

Physics

Standard level

Paper 2

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

C	Questi	on	Answers	Notes	Total
1.	а	i	towards the centre «of the circle» / horizontally to the right ✓	Do not accept towards the centre of the bowl	
1.	a	ii	downward vertical arrow of any length ✓ arrow of correct length ✓	Judge the length of the vertical arrow by eye. The construction lines are not required. A label is not required eg:	2
1.	а	iii	ALTERNATIVE 1 $F = N\cos\theta \checkmark$ $mg = N\sin\theta \checkmark$ dividing/substituting to get result \checkmark ALTERNATIVE 2 right angle triangle drawn with F , N and W/mg labelled \checkmark angle correctly labelled and arrows on forces in correct directions \checkmark correct use of trigonometry leading to the required relationship \checkmark	eg: $tan\theta = \frac{O}{A} = \frac{mg}{F}$ $F = \frac{mg}{tan\theta}$	3

(Question 1 continued)

1.	b	$\frac{mg}{\tan \theta} = m \frac{v^2}{r} \checkmark$ $r = R\cos \theta \checkmark$ $v = \sqrt{\frac{gR\cos^2 \theta}{\sin \theta}} / \sqrt{\frac{gR\cos \theta}{\tan \theta}} / \sqrt{\frac{9.81 \times 8.0\cos 22}{\tan 22}} \checkmark$ $v = 13.4 / 13 \text{ sm s}^{-1} \text{ w} \checkmark$	Award [4] for a bald correct answer Award [3] for an answer of 13.9/14 «ms ⁻¹ ». MP2 omitted	4
1.	С	there is no force to balance the weight/N is horizontal ✓ so no / it is not possible ✓	Must see correct justification to award MP2	2
1.	d	speed before collision $v = \sqrt[4]{2gR} = x \cdot 12.5 \text{ s/ms}^{-1} \text{ s/ms}^{-1}$ «from conservation of momentum» common speed after collision is $\frac{1}{2}$ initial speed $\sqrt[4]{v_c} = \frac{12.5}{2} = 6.25 \text{ms}^{-1} \text{ s/ms}^{-1}$ $h = \sqrt[4]{\frac{v_c^2}{2g}} = \frac{6.25^2}{2 \times 9.81} \times 2.0 \text{ s/ms}^{-1}$	Allow 12.5 from incorrect use of kinematics equations Award [3] for a bald correct answer Award [0] for mg(8) = 2 mgh leading to h = 4 m if done in one step. Allow ECF from MP1	3

Q	uesti	on	Answers	Notes	Total
2.	а	i	a gas in which there are no intermolecular forces OR	Accept atoms/particles.	
			a gas that obeys the ideal gas law/all gas laws at all pressures, volumes and temperatures		1
			OR		
			molecules have zero PE/only KE ✓		
2.	а	ii	$N = \frac{pV}{kT} = \frac{5.3 \times 10^5 \times 2.1 \times 10^{-4}}{1.38 \times 10^{-23} \times 310} \approx 2.6 \times 10^{22} $		1
2.	а	iii	«For one atom $U = \frac{3}{2}kT$ » \hat{A} Â 1.38 Â 10 ⁻²³ Â 310 / 6.4 Â 10 ⁻²¹ «J» \checkmark	Allow ECF from (a)(ii) Award [2] for a bald correct answer	2
			$U = \text{ (2.6 \times 10^{22} \times \frac{3}{2} \times 1.38 \times 10^{-23} \times 310 \times 170 \times J \times \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Allow use of $U = \frac{3}{2} pV$	
2.	b	i	$p_2 = \text{~}5.3 \times 10^5 \times \frac{2.1 \times 10^{-4}}{6.8 \times 10^{-4}} \text{~} 1.6 \times 10^5 \text{~} \text{~} \text{Pa} \text{~} \text{~} \checkmark$		1
2.	b	ii	«volume has increased and» average velocity/KE remains unchanged ✓	The idea of average must be included	
			«so» molecules collide with the walls less frequently/longer time between collisions with the walls ✓	Decrease in number of collisions is not sufficient for MP2. Time must be included.	2 max
			«hence» rate of change of momentum at wall has decreased ✓ «and so pressure has decreased»	Accept atoms/particles.	

3.	а	i	the incident wave «from the speaker» and the reflected wave «from the closed end» superpose/combine/interfere ✓	Allow superimpose/add up Do not allow meet/interact	1
3.	а	ii	Horizontal arrow from X to the right ✓	MP2 is dependent on MP1 Ignore length of arrow	1
3.	а	iii	P at a node ✓	displacement to the right pipe N X Y displacement to the left	1
3.	а	iv	wavelength is $\lambda = \frac{4 \times 0.30}{3} = 0.40 \text{ m}$ \checkmark $f = \frac{340}{0.40} = 850 \text{ Hz}$	Award [2] for a bald correct answer Allow ECF from MP1	2
3.	b	i	$\frac{\sin \theta_{\rm C}}{340} = \frac{1}{1500} \checkmark$ $\theta_{\rm C} = 13 «°» \checkmark$	Award [2] for a bald correct answer Award [2] for a bald answer of 13.1 Answer must be to 2/3 significant figures to award MP2 Allow 0.23 radians	
3.	b	ii	correct orientation ✓ greater separation ✓	Do not penalize the lengths of A and B in the water Do not penalize a wavefront for C if it is consistent with A and B MP1 must be awarded for MP2 to be awarded eg: C B A air water	2

Q	Question		Answers	Notes	
4.			the work done per unit charge ✓	Award [1] for "energy per unit charge provided by the cell"/"power per unit current"	
				Award [1] for "potential difference across the terminals of the cell when no current is flowing"	2
				Do not accept "potential difference across terminals of cell"	
			in moving charge from one terminal of a cell to the other / all the way round the circuit ✓		
4.	b	i	the resistance is proportional to length / see 0.35 AND 1«.00»✓		
			so it equals 0.35 × 80 ✓		2
			« = 28 Ω»		
4.	b	ii	current leaving 12 V cell is $\frac{12}{80} = 0.15 \text{ « A »}$	Award [2] for a bald correct answer	
			OR		
			$E = \frac{12}{80} \times 28 \checkmark$		2
			E = «0.15×28 = » 4.2 «∨» ✓	Allow a 1sf answer of 4 if it comes from a calculation.	
				Do not allow a bald answer of 4 « V»	
				Allow ECF from incorrect current	

Q	uesti	on	Answers	Notes	Total
5.	а	i	Average height = 127 «m» \checkmark Specific energy «= $\frac{mg\overline{h}}{m}$ = $g\overline{h}$ = 9.81×127» = 1.2×10 ³ J kg ⁻¹ \checkmark	Unit is essential Allow $g = 10$ gives 1.3×10^3 J kg ⁻¹ Allow ECF from 110 m $(1.1 \times 10^3$ J kg ⁻¹) or 144 m $(1.4 \times 10^3$ J kg ⁻¹)	2
5.	a	ii	mass per second leaving dam is $\frac{1.2 \times 10^5}{60} \times 10^3 = \text{«} 2.0 \times 10^6 \text{ kg s}^{-1} \text{»} \checkmark$ rate of decrease of GPE is $= 2.0 \times 10^6 \times 9.81 \times 127 \checkmark$ $= 2.49 \times 10^9 \text{ «}W\text{»} / 2.49 \text{«}GW\text{»} \checkmark$ efficiency is $\frac{1.8}{2.5} = \text{»} 0.72 / 72\% \checkmark$	Do not award ECF for the use of 110 m or 144 m Allow 2.4 GW if rounded value used from (a)(i) or 2.6 GW if g = 10 is used	3
5.	b		water is pumped back up at times when the demand for/price of electricity is low ✓		1

6.	а		«most of» the mass of the atom is confined within a very small volume/nucleus ✓ «all» the positive charge is confined within a very small volume/nucleus ✓ electrons orbit the nucleus «in circular orbits» ✓		2 max
6.	b	i	the energy needed to separate the nucleons of a nucleus OR energy released when a nucleus is formed from its nucleons ✓	Allow neutrons AND protons for nucleons Don't allow constituent parts	1
6.	b	ii	$Q = 106 \times 8.550 - 106 \times 8.521 = 3.07 \text{ "MeV "} \checkmark$ $\text{"} Q \approx 3 \text{ MeV "}$		1
6.	С	i	line with arrow as shown labelled anti-neutrino/ v ✓	Correct direction of the "arrow" is essential The line drawn must be "upwards" from the vertex in the time direction i.e. above the horizontal eg: d quark	1
6.	С	ii	V = W ⁻ ✓		1