M18/4/PHYSI/SP2/ENG/TZ1/XX/M

Diploma Programme Programme du diplôme Programa del Diploma

Markscheme

May 2018

Physics

Standard level

Paper 2

10 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Q	uestic	on	Answers	Notes	Total
1.	a		use of conservation of energy OR $v^2 = u^2 + 2as \checkmark$ $v = (\sqrt{2 \times 60.0 \times 9.81}) = 34.3 \text{ sms}^{-1} \text{ s} \checkmark$		2
1.	b	i	use of impulse $F_{ave} \times \Delta t = \Delta p$ <i>OR</i> use of $F = ma$ with average acceleration <i>OR</i> $F = \frac{80.0 \times 34.3}{0.759} \checkmark$ 3620 «N» \checkmark	Allow ECF from (a).	2
1.	b	ii	upwards ✓ clearly longer than weight ✓	For second marking point allow ECF from (b)(i) providing line is upwards.	2
1.	b	iii	3620+80.0×9.81 ✓ 4400 «N» ✓	Allow ECF from (b)(i).	2

(continued...)

(Question 1 continued)

1.	С	i	(loss in) gravitational potential energy (of block) into kinetic energy (of block) ✓	<u>Must</u> see names of energy (gravitational potential energy and kinetic energy) – Allow for reasonable variations of terminology (eg energy of motion for KE).	1
1.	с	ii	(loss in) gravitational potential and kinetic energy of block into elastic potential energy of rope \checkmark	See note for 1(c)(i) for naming convention.	
				<u>Must</u> see either the block or the rope (or both) mentioned in connection with the appropriate energies.	1
1.	d		k can be determined using EPE = $\frac{1}{2}kx^2$ \checkmark		
			correct statement or equation showing	Candidate must clearly indicate the energy associated with either position A or B for MP2.	
			GPE at A = EPE at C		2
			OR		
			(GPE + KE) at B = EPE at C \checkmark		

2.	а		« <u>3.0×8.31×290</u> 0.15 48 «kPa» ✓		1
2.	b	i	mass = $\left(\frac{860}{3100 \times 23}\right) = 0.012 \text{ kg} \text{ J}$	Award [1] for a bald correct answer.	1
2.	b	ij	$\frac{3}{2}1.38 \times 10^{-23} \times 313 = 6.5 \times 10^{-21} \text{ sJ} \text{ s} \checkmark$		1
2.	С		larger temperature implies larger (average) speed/larger (average) KE of molecules/particles/atoms \checkmark	Ignore any mention of PV=nRT.	
			increased force/momentum transferred to walls (per collision) / more frequent collisions with walls \checkmark		3
			increased force leads to increased pressure because P=F/A (as area remains constant) \checkmark		

3.	а	i	superposition of light from each slit / interference of light from both slits \checkmark with path/phase difference of any half-odd multiple of wavelength/any odd multiple of π (in words or symbols) \checkmark producing destructive interference \checkmark	Ignore any reference to crests and troughs.	3
3.	а	ii	evidence of solving for $D \ll D = \frac{sd}{\lambda} \gg \checkmark$ $\ll \frac{4.50 \times 10^{-3} \times 0.300 \times 10^{-3}}{633.0 \times 10^{-9}} \times 2 \gg = 4.27 \ll \checkmark$	Award [1] max for 2.13 m.	2
3.	b	i	$\frac{633.0}{1.33} = 476 \text{ snm} $		1
3.	b	ii	distance between peaks decreases ✓ intensity decreases ✓		2

4.	a	1.7×10 ⁻⁸ × $\frac{0.10}{(0.02×10^{-2})^2}$ ✓ 0.043«Ω» ✓		2
4.	b	$v \ll \frac{I}{neA} \approx \frac{2}{8.5 \times 10^{22} \times 1.60 \times 10^{-19} \times 0.02^{2}} \checkmark$ 0.368 «cm s ⁻¹ » ✓ 0.37 «cm s ⁻¹ » ✓	Award [2 max] if answer is not expressed to 2 sf.	3

5.	а		out of the page plane / \odot 🗸	Do not accept just "up" or "outwards".	1
5.	b		$1.60 \times 10^{-19} \times 6.8 \times 10^5 \times 8.5 = 9.2 \times 10^{-13} \text{ (N)} \checkmark$		1
5.	C	i	the magnetic force does not do work on the electron hence does not change the electron's kinetic energy <i>OR</i> the magnetic force/acceleration is at right angles to velocity √		1
5.	С	ii	the velocity of the electron is at right angles to the magnetic field \checkmark (therefore) there is a centripetal acceleration / force acting on the charge \checkmark	OWTTE	2

6.	а		${}^{10}_{4}\text{Be} \rightarrow {}^{10}_{5}\text{B} + b + \overline{V}_{e}$ conservation of mass number AND charge ${}^{10}_{5}\text{B}$, ${}^{10}_{4}\text{Be} \checkmark$	Correct identification of both missing values required for [1] .	1
6.	b	i	correct shape <i>ie</i> increasing from 0 to about $0.80N_0 \checkmark$		
			crosses given line at $0.50 N_0$ 🗸		
			number of nuclei		
			N_0 N_0 N_0 $0.75 N_0$ $0.50 N_0$ $0.25 N_0$ 0 0 time		2

(continued...)

(Question 6b continued)

6.	b	ii	ALTERNATIVE 1	Must see at least one extra sig fig in	
			fraction of Be = $\frac{1}{8}$, 12.5%, or 0.125 \checkmark	iinai answer.	
			therefore 3 half lives have elapsed \checkmark		
			$t_{\frac{1}{2}} = \frac{4.3 \times 10^6}{3} = 1.43 \times 10^6 \ll 1.4 \times 10^6 \text{wys} \checkmark$		
			ALTERNATIVE 2		3
			fraction of Be = $\frac{1}{8}$, 12.5%, or 0.125 \checkmark		
			$\frac{1}{8} = e^{-\lambda} \left(4.3 \times 10^6 \right) \text{ leading to } \lambda = 4.836 \times 10^{-7} \text{ sym}^{-1} \checkmark$		
			$\frac{ln2}{\lambda} = 1.43 \times 10^6 \text{ (sy)} \checkmark$		
6.	b	iii	1.9×10 ¹¹ ✓		1
				(co	ntinued)

(Question 6 continued)

6.	С	i	emission of (infrared) electromagnetic/infrared energy/waves/radiation. \checkmark		1
6.	с	ii	the (peak) wavelength of emitted em waves depends on temperature of emitter/reference to Wein's Law ✓ so frequency/color depends on temperature ✓		2
6.	C	iii	$\lambda = \frac{2.90 \times 10^{-3}}{253} \checkmark$ = 1.1×10 ⁻⁵ «m» √	Allow ECF from MP1 (incorrect temperature).	2
6.	С	iv	correct units for Intensity (allow <i>W</i> , <i>Nms</i> ⁻¹ OR <i>Js</i> ⁻¹ <i>in numerator</i>) \checkmark rearrangement into proper SI units = kgs ⁻³ \checkmark	Allow ECF for MP2 if final answer is in fundamental units.	2