M18/4/PHYSI/HP3/ENG/TZ2/XX/M

Markscheme

May 2018

Physics

Higher level

Paper 3

30 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

Question	Answers	Notes	Total
1. a	distance fallen = $654 - 12 = 642 \text{ wmm} \checkmark$ absolute uncertainty = $2 + 0.1 \text{ wmm} \approx 2 \times 10^{-3} \text{ wm} \circ \text{or} = 2.1 \times 10^{-3} \text{ wm} \circ \text{or}$ $2.0 \times 10^{-3} \text{ wm} \checkmark$	Accept answers in mm or m	2
1. b	$ \mathbf{a} = \frac{2s}{t^2} = \frac{2 \times 0.642}{0.363^2} = 9.744 \text{ wms}^{-2} \text{ ws}^{-2} \text{ ss}^{-2} $	Accept working in % for MP2 and MP3 Final uncertainty must be the absolute uncertainty	4

C	Question		Answers	Notes	Total
2.	a		combines the two equations to obtain result «for example $\frac{1}{I} = K^2 (C + x)^2 = \frac{4\pi}{P} (C + x)^2 \gg \checkmark$ <i>OR</i> reverse engineered solution – substitute $K = 2\sqrt{\frac{\pi}{P}}$ into $\frac{1}{I} = K^2 (C + x)^2$ to get $I = \frac{P}{4\pi (C + x)^2} \checkmark$	There are many ways to answer the question, look for a combination of two equations to obtain the third one	1
2.	b	i	extrapolating line to cross x-axis / use of x-intercept OR Use $C = \frac{y \text{-intercept}}{\text{gradient}}$ OR use of gradient and one point, correctly substituted in one of the formulae \checkmark accept answers between 3.0 and 4.5 «cm» \checkmark	Award [1 max] for negative answers	2

(Question 2 continued)

(Question		Answers	Notes	Total
2.	b	ii	ALTERNATIVE 1		
			Evidence of finding gradient using two points <u>on the line</u> at least 10 cm apart \checkmark	For 3rd marking point if no unit given, assume answer is in W	
			Gradient found in range: 115–135 <i>or</i> 1.15–1.35 ✓		
				Award [3 max] for an answer between 6.9W and 9.5W (POT penalized in 3rd marking point)	
				Alternative 2 is worth [3 max]	
			Using $P = \frac{4\pi}{K^2}$ to get value between 6.9×10^{-4} and 9.5×10^{-4} «W»		
			and POT correct ✓		
			Correct unit, W and answer to 1, 2 or 3 significant figures ✓		4
			ALTERNATIVE 2		
			Finds $I\left(\frac{1}{y^2}\right)$ from use of one point (<i>x</i> and <i>y</i>) on the line with		
			$x > 6$ cm and C from (b)(i) to use in $I = \frac{P}{4\pi(C+x)^2}$ or		
			$\frac{1}{\sqrt{I}} = Kx + KC \checkmark$		
			Correct re-arrangement to get <i>P</i> between 6.9×10^{-4} and 9.5×10^{-4} «W» and POT correct \checkmark		
			Correct unit, W and answer to 1, 2 or 3 significant figures \checkmark		

(Question 2 continued)

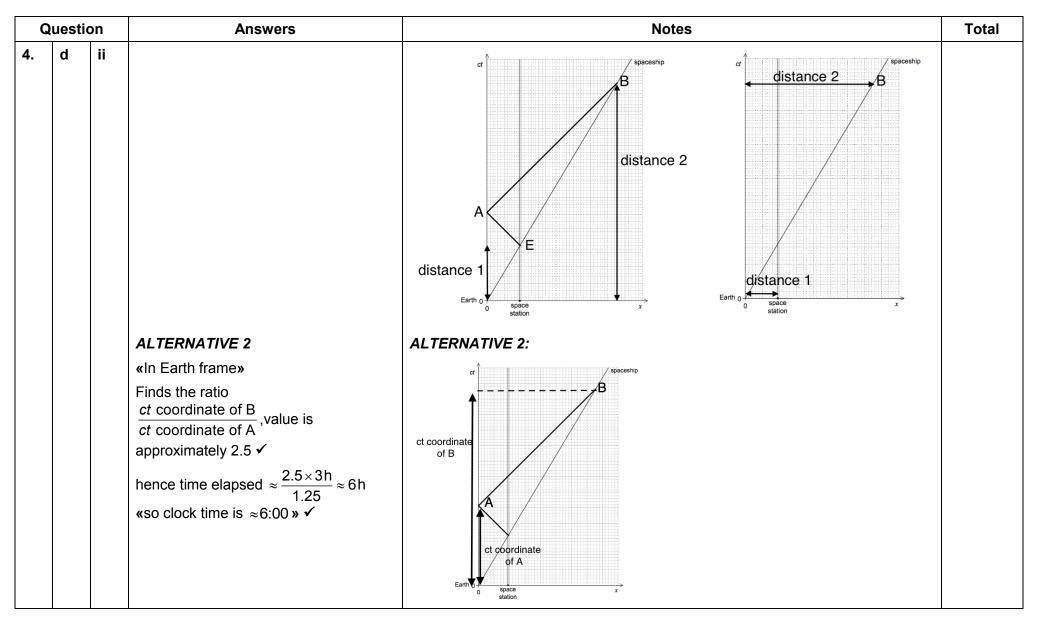
C	Question	Answers	Notes	Total
2.	С	this graph will be a curve / not be a straight line \checkmark	OWTTE	
		more difficult to determine value of K		
		OR		2
		more difficult to determine value of C		
		OR		
		suitable mathematical argument ✓		

Section B

Option A — Relativity

Question		on	Answers	Notes	Total
3.	а	i	1.25c ✓		1
3.	а	ii	ALTERNATIVE 1		
			$u' = \frac{(0.50 + 0.75)}{1 + 0.5 \times 0.75} c \checkmark$		
			0.91 <i>c</i> ✓		
			ALTERNATIVE 2		2
			$u' = \frac{-0.50 - 0.75}{1 - (-0.5 \times 0.75)} c \checkmark$		
			-0.91 <i>c</i> ✓		
3.	b		nothing can travel faster than the speed of light (therefore (a)(ii) is the valid answer) \checkmark	OWTTE	1

Q	luestion	Answers	Notes	Total
4.	a	0.60 <i>c</i> OR 1.8×10 ⁸ «m s ⁻¹ » ✓		1
4.	b	ALTERNATIVE 1time interval in the Earth frame = $90 \times \gamma = 112.5$ minutes \checkmark «in Earth frame it takes 112.5 minutes for ship to reach station»so distance = $112.5 \times 60 \times 0.60c$ \checkmark 1.2×10^{12} «m» \checkmark ALTERNATIVE 2Distance travelled according in the spaceship frame = $90 \times 60 \times 0.6c$ \checkmark $= 9.72 \times 10^{11}$ «m» \checkmark		3
		Distance in the Earth frame $\ll 9.72 \times 10^{11} \times 1.25 \approx 1.2 \times 10^{12} \text{ cm} \text{ s}$		


(Question 4 continued)

G	Question		Answers	Notes	Total
4.	С		signal will take «112.5×0.60 =» 67.5 «minutes» to reach Earth «as it travels at <i>c</i> » OR signal will take $\left(\frac{1.2 \times 10^{12}}{3 \times 10^8}\right)$ =» 4000 « <i>s</i> » ✓ total time «= 67.5+112.5» = 180 minutes or 3.00 h or 3:00 am		2
4.	d	i	line from event E to A, upward and to left with A on <i>ct</i> axis (approx correct) ✓ line from event A to B, upward and to right with B on <i>ct'</i> axis (approx correct) ✓ both lines drawn with ruler at 45 (judge by eye) ✓	eg:	3

(Question 4 continued)

Question	Answers	Notes	Total
4. d ii	ALTERNATIVE 1 «In spaceship frame» Finds the ratio $\frac{OB}{OE}$ (or by similar triangles on x or ct axes), value is approximately 4 \checkmark hence time elapsed $\approx 4 \times 90$ mins $\approx 6h$ «so clock time is $\approx 6:00 \text{ s} \checkmark$	Alternative 1:Image: Al	2

(Question 4 continued)

C	Questi	on	Answers	Notes	Total
5.	а		quantity that is the same/constant in all inertial frames \checkmark		1
5.	b	i	spacetime interval = $27^2 - 15^2 = 504 \text{ sm}^2 \text{ spacetime}$		1
5.	b	ii	ALTERNATIVE 1 Evidence of $x' = 0 \checkmark$ $t' \ll = \frac{\sqrt{504}}{c} \gg = 7.5 \times 10^{-8} \ll 3 \%$ ALTERNATIVE 2 $\gamma = 1.2 \checkmark$ $t' \ll = \frac{9 \times 10^{-8}}{1.2} \gg = 7.5 \times 10^{-8} \ll 3 \%$		2
5.	С		observer B measures the proper time and this is the shortest time measuredORtime dilation occurs «for B's journey» according to AORORobserver B is stationary relative to the particle, observer A is not ✓		1

Q	Questi	on	Answers	Notes	Total
6.	а		$\gamma \ll = \frac{3350}{938} \gg = 3.57 \checkmark$		1
6.	b	i	energy of pion = $(3350 \times 2) - 6200 = 500 \text{ «MeV » }$ $500^2 = p^2 c^2 + 140^2 \checkmark$ $p = 480 \text{ «MeV } c^{-1} \text{ » } \checkmark$		3
6.	b	ii	path of pion constructed in direction around 4–5 o'clock by eye ✓	eg: incident proton created proton	1

C	Question		Answers	Notes	Total
7.	а	i	boundary inside which events cannot be communicated to an outside observer OR distance/surface at which escape velocity = $c \checkmark$	OWTTE	1
7.	а	ii	mass of black hole = 7.2×10^{36} «kg» \checkmark « $\frac{2GM}{c^2}$ =» 1×10 ¹⁰ «m» \checkmark		2
7.	b		wherever S-2 is in orbit, time observed is longer than 5.0 s \checkmark when closest to the star S-2 periodic time dilated more than when at greatest distance \checkmark Justification using formula or time is more dilated in stronger gravitational fields \checkmark		2 max

Option B — Engineering physics

C	Questio	on	Answers	Notes	Total
8.	а	i	an object's resistance to change in rotational motion <i>OR</i> equivalent of mass in rotational equations ✓	OWTTE	1
8.	а	ii	$\Delta KE + \Delta \text{ rotational } KE = \Delta GPE$ OR $\frac{1}{2}mv^{2} + \frac{1}{2}I\frac{v^{2}}{r^{2}} = mgh \checkmark$ $\frac{1}{2} \times 0.250 \times v^{2} + \frac{1}{2} \times 1.3 \times 10^{-4} \times \frac{v^{2}}{1.44 \times 10^{-4}} = 0.250 \times 9.81 \times 0.36 \checkmark$ $v = 1.2 \text{ wm s}^{-1} \text{ w} \checkmark$		3
8.	а	111	$\omega \ll \frac{1.2}{0.012} \gg 100 \ll \text{rad s}^{-1} \gg \checkmark$		1
8.	b	i	force in direction of motion ✓ so linear speed increases ✓		2
8.	b	ii	force gives rise to anticlockwise/opposing torque on wheel ✓ so angular speed decreases ✓	OWTTE	2

C	Question	Answers	Notes	Total
9.	a	ALTERNATIVE 1 «Using $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ » $V_2 = \frac{47.1 \times (273 + 19)}{(273 - 12)}$ ✓ $V_2 = 52.7 \text{ cm}^3$ » ✓ ALTERNATIVE 2 «Using $PV = nRT$ » $V = \frac{243 \times 8.31 \times (273 + 19)}{11.2 \times 10^3}$ ✓ $V = 52.6 \text{ cm}^3$ » ✓		2
9.	b	$W \ll P \Delta V \gg = 11.2 \times 10^3 \times (52.7 - 47.1) \checkmark$ $W = 62.7 \times 10^3 \ll J \gg \checkmark$	Accept 66.1×10^3 J if 53 used Accept 61.6×10^3 J if 52.6 used	2
9.	C	$\Delta U \ll = \frac{3}{2} nR \Delta T \gg = 1.5 \times 243 \times 8.31 \times (19 - (-12)) = 9.39 \times 10^4 \checkmark$ $Q \ll = \Delta U + W \gg = 9.39 \times 10^4 + 6.27 \times 10^4 \checkmark$ $Q = 1.57 \times 10^5 \ll J \gg \checkmark$	Accept 1.60×10 ⁵ if 66.1×10 ³ J used Accept 1.55×10 ⁵ if 61.6 ×10 ³ J used	3

(Question 9 continued)

Q	Question		Answers	Notes	Total
9.	d	i	concave curve from RHS of present line to point above LHS of present line ✓ vertical line from previous curve to the beginning ✓	eg: p↑	2
					-
9.	d	ii	energy is removed from the gas and so entropy decreases	OWTTE	
			OR		1
			temperature decreases «at constant volume (less disorder)» so entropy decreases ✓		
9.	е		different paradigms/ways of thinking/modelling/views ✓	OWTTE	
			allows testing in different ways ✓		1 max
			laws can be applied different situations ✓		

Q	Question		Answers	Notes	Total
10.	а		$\frac{1}{2}\rho v_{X}^{2} = p_{Y} - p_{X} = \rho g \Delta h \checkmark$ $v_{X} = \sqrt{2 \times 9.8 \times (0.32 - 0.10)} \checkmark$ $v_{X} = 2.08 \text{ sms}^{-1} \text{ ss} \checkmark$		3
10.	b	i	$R = \ll \frac{vr\rho}{\eta} = \frac{2.1 \times 0.25 \times 10^3}{8.9 \times 10^{-4}} \gg 5.9 \times 10^5 \checkmark$		1
10.	b	ii	(R > 1000) flow is not laminar, so assumption is invalid \checkmark	OWTTE	1

C	Questio	n Answers	Notes	Total
11.	а	general shape as shown \checkmark peak at 6 kHz \checkmark graph does not touch the <i>f</i> axis \checkmark	amplitude	3
11.	b	peak broadens ✓ reduced maximum amplitude / graph shifted down ✓ resonant frequency decreases / graph shifted to the left ✓		2 max

Option C — Imaging

Q	Question		Answers	Notes	
12.	a	i	constructs ray parallel to principal axis and then to image position <i>OR</i> u = 8cm and v = 24cm and lens formula ✓ 6 «cm» ✓	eg:	2
12.	а	ii	<i>m</i> =«−»3.0 ✓		1
12.	b		completes diagram with blue focal point closer to lens ✓blue light/rays refracted/deviated moreORspeed of blue light is less than speed of red light ✓ORdifferent colors/wavelengths have different focalpoints/converge at different points ✓	First marking point can be explained in words or seen on diagram	2

Q	Question		Answers	Notes	Total
13.	а		where the extensions of the reflected rays from the primary mirror would meet, with construction lines ✓	eg:	1
13.	b		greater magnification 🖌		1
13.	С		«use of $\frac{1.22\lambda}{d}$ to get» resolution of 6.7×10 ⁻⁹ «rad» ✓ $\frac{5.8 \times 10^{-7}}{6.7 \times 10^{-9}} = 87$ «m» ✓ some reference to difficulty in making optical mirrors/lenses of this size ✓	Allow $\frac{5.8 \times 10^{-7}}{5.5 \times 10^{-9}} = 105 \text{ m }$	3

Q	Question		Answers	Notes	Total
14.	a		$sinc = \frac{1.4444}{1.4475} \text{ or } sinc = 0.9978 \checkmark$ critical angle = 86.2«°» \checkmark with cladding only rays travelling nearly parallel to fibre axis are transmitted OR pulse broadening/dispersion will be reduced \checkmark	OWTTE	3
14.	b	i	attenuation = $\ll 10 \log \frac{I}{I_0} \approx 10 \log \frac{2.0 \times 10^{-6}}{400 \times 10^{-6}} \checkmark$ attenuation = $\ll -\infty 23 \ll dB \gg \checkmark$	Accept $10\log\frac{400}{2.0}$ for first marking point	2
14.	b	ii	$185 \times 0.200 = 37 \text{ loss over length of cable ✓}$ « $\frac{37-23}{12} = 1.17$ » so two amplifiers are sufficient ✓		2
14.	b	111	 mention of material dispersion ✓ mention that rays become separated in time OR mention that ray A travels slower/arrives later than ray B ✓ 		2

(Question 14 continued)

Q	Question		Answers	Notes	Total
14.	C		high bandwidth/data transfer rates ✓ low distortion/Low noise/Faithful reproduction ✓ high security ✓ fast «fibre» broadband/internet ✓ high quality optical audio ✓	Allow any other verifiable sensible advantage	1 max
			medical endoscopy ✓		

15.	а	many/array of transducers send ultrasound through body/object 🗸
		B scan made from many A scans in different directions \checkmark
		the reflection from organ boundaries gives rise to position \checkmark
		the amplitude/size gives brightness to the B scan \checkmark
		2D/3D image formed «by computer» ✓

(Question 15 continued)

C)uesti	on	Answers	Notes	Total
15.	b	i	the thickness of tissue that reduces the intensity «of the X-rays» by a half OR $x_{\frac{1}{2}} = \frac{\ln 2}{\mu}$ where $x_{\frac{1}{2}}$ is the half value thickness and μ is attenuation coefficient \checkmark	Symbols must be defined for mark to be awarded	1
15.	b	ii	after fat layer, $I_{fat} = I_0 e^{-0.4499 \times 5.00} \checkmark$ after muscle layer, $I = I_{fat} e^{-0.8490 \times 4.00} \checkmark$ $I = 0.003533 I_0$ or $0.35\% \checkmark$		3
15.	b	iii	<pre>«high energies factors:» less attenuation/more penetration ✓ more damage to the body ✓ «so» stronger signal leaves the body OR «so» used in «most» medical imaging techniques ✓ «low energy factors:» must be used with enhancement techniques ✓ greater attenuation/less penetration ✓ «so» more damage to the body «on surface layers» OR «so» unwanted in «most» medical imaging techniques ✓</pre>		3 max

Option D — Astrophysics

Q	uesti	on	Answers	Notes	Total
16.	a		photon/fusion/radiation force/pressure balances gravitational force/pressure ✓ gives both directions correctly (outwards radiation, inwards gravity) ✓	OWTTE	2
16.	b		« $L \propto M^{3.5}$ for main sequence» luminosity of $P = 2.5$ «luminosity of the Sun» \checkmark		1
16.	С	i	$L_{Gacrux} = 5.67 \times 10^{-8} \times 4\pi \times (58.5 \times 10^{9})^{2} \times 3600^{4} \checkmark$ $L_{Gacrux} = 4.1 \times 10^{29} \text{ wW} \text{ w} \checkmark$ $\frac{L_{Gacrux}}{L_{\odot}} \text{ w} = \frac{4.1 \times 10^{29}}{3.85 \times 10^{26}} \text{ w} = 1.1 \times 10^{3} \checkmark$		3
16.	С	ii	if the star is too far then the parallax angle is too small to be measured OR stellar parallax is limited to closer stars ✓	OWTTE	1

(Question 16 continued)

Q	luesti	on	Answers	Notes	Total
16.	d	i	line or area roughly inside shape shown – judge by eye ✓	Accept straight line or straight area at roughly 45°	1
16.	d	ii	P between 1 L_{\odot} and 10 ¹ L_{\odot} on main sequence drawn \checkmark		1

(Question 16 continued)

Question		on	Answers	Notes	Total
16.	d	111	at $10^{3}L_{\odot}$, further to right than 5000 K and to the left of 2500 K (see shaded region) ✓	$luminosity / L_{0}$	1

(Question 16 continued)

Question		Answers	Notes	Total
16.	е	ALTERNATIVE 1	OWTTE for both alternatives	
		Main sequence to red giant \checkmark		
		planetary nebula with mass reduction/loss		
		OR		
		planetary nebula with mention of remnant mass \checkmark		
		white dwarf 🗸		
		ALTERNATIVE 2		
		Main sequence to red supergiant region \checkmark		3
		Supernova with mass reduction/loss		
		OR		
		Supernova with mention of remnant mass \checkmark		
		neutron star		
		OR		
		Black hole ✓		

Question		on	Answers	Notes	Total
17.	a		use of gradient or any coordinate pair to find $H_0 \ll \frac{v}{d}$ or $\frac{1}{H_0} \ll \frac{d}{v}$ \checkmark convert Mpc to m and km to m \ll for example $\frac{82 \times 10^3}{10^6 \times 3.26 \times 9.46 \times 10^{15}}$ \checkmark	Allow final answers between 3.7×10^{17} and 3.9×10^{17} «s» or 4×10^{17} «s»	
			age of universe $\ll = \frac{1}{H_0} \gg = 3.8 \times 10^{17} \ll s \gg \checkmark$		3
17.	b		non-accelerated/uniform rate of expansion OR H_0 constant over time \checkmark	OWTTE	1
17.	c		$z \ll = \frac{v}{c} \gg = \frac{4.6 \times 10^4 \times 10^3}{3.00 \times 10^8} = 0.15 \checkmark$ $\frac{R}{R_0} = \ll z + 1 \gg = 1.15 \checkmark$ $\frac{R_0}{R} = \ll \frac{1}{1.15} = \gg 0.87$ OR $87 \% \text{ of the present size } \checkmark$		3

Question		Answers	Notes	Total
18.	a	 «For a star to form»: magnitude of PE of gas cloud > KE of gas cloud <i>OR</i> Mass of cloud > Jean's mass <i>OR</i> Jean's criterion is the critical mass ✓ hence a hot diffuse cloud could have KE which is too large/PE too small <i>OR</i> hence a cold dense cloud will have low KE/high PE <i>OR</i> a cold dense cloud is more likely to exceed Jeans mass <i>OR</i> a hot diffuse cloud is less likely to exceed the Jeans mass ✓ 	Accept $E_p + E_k < 0$	2
18.	b	Neutron capture creates heavier isotopes / heavier nuclei / more unstable nucleus \checkmark <u>β^{-} decay</u> of heavy elements/iron increases atomic number «by 1» \checkmark	OWTTE	2

C	Questic	Answers	Notes	Total
19.	а	«rotational» velocity of stars are expected to decrease as distance from centre of galaxy increases ✓ the observed velocity of outer stars is constant/greater than predicted ✓ implying large mass on the edge «which is dark matter» ✓	OWTTE 1st and 2nd marking points can be awarded from an annotated sketch with similar shape as the one below V Observed Expected R	3
19.	b	data from type 1a supernovae shows universe expanding at an accelerated rate ✓ gravity was expected to slow down the expansion of the universe OR this did not fit the hypotheses at that time ✓ dark energy counteracts/opposes gravity OR dark energy causes the acceleration ✓	OWTTE	3