M18/4/PHYSI/HP3/ENG/TZ1/XX/M

Diploma Programme Programme du diplôme Programa del Diploma

Markscheme

May 2018

Physics

Higher level

Paper 3

23 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

Question		on	Answers	Notes	Total
1.	а		smooth line, not kinked, passing through <u>all</u> the error bars \checkmark		1
1.	b	i	0.84±0.03 «s» ✓	Accept any value from the range: 0.81 to 0.87. Accept uncertainty 0.03 OR 0.025.	1
1.	b	ï	$\mathcal{K} = \sqrt{0.005} \times 0.84 = 0.059 \checkmark$ $\ll \frac{\Delta K}{K} = \frac{\Delta P}{P} \gg$ $\Delta \mathcal{K} = \frac{0.03}{0.84} \times 0.0594 = 0.002 \checkmark$ $\ll \mathcal{K} = (0.059 \pm 0.002) \gg$ uncertainty given to 1sf \checkmark	Allow ECF [3 max] if 10T is used. Award [3] for BCA.	3
1.	b	iii	$sT^{\frac{1}{2}} \checkmark$	Accept $s\sqrt{T}$ or in words.	1
1.	С		straight AND ascending line √ through origin √		2
1.	d		$K = \sqrt{\text{slope}} \checkmark$		1

2.	а	cell, ammeter and resistor in series √		1
2.	b	resistance of resistor would increase / be greater than $10 \Omega \checkmark$ $R + r \ll from \varepsilon = I(R + r) \gg$ would be overestimated / lower current \checkmark therefore calculated <i>r</i> would be larger than real \checkmark	Award MP3 only if at least one previous mark has been awarded.	3
2.	С	variable resistor would allow for multiple readings to be made \checkmark gradient of V-I graph could be found «to give <i>r</i> » \checkmark	Award [1 max] for taking average of multiple.	2

Section B

Option A — Relativity

3.	а		magnetic field 🗸		1
3.	b	i	«according to Y» the positive charges are moving «to the right» \checkmark d decreases \checkmark	For MP1, movement of positive charges must be mentioned explicitly.	2
3.	b	ii	positive charges are moving, so there is a magnetic field \checkmark the density of positive charges is higher than that of negative charges, so there is an electric field \checkmark	The reason must be given for each point to be awarded.	2

4.	а	i	$\ll \frac{10^4}{0.995 \times 3 \times 10^8} = \gg 34 \ll \mu s \gg \checkmark$	Do not accept $10^4/c = 33 \mu s$.	1
4.	а	ii	time is much longer than 10 times the average life time «so only a small proportion would not decay» \checkmark		1
4.	b	i	$\gamma = 10 \checkmark$ $\Delta t_0 = \left(\frac{\Delta t}{\gamma}\right) = \frac{34}{10} = 3.4 \times \mu s \gg \checkmark$		2
4.	b	ii	the value found in (b)(i) is of similar magnitude to average life time ✓ significant number of muons are observed on the ground ✓ «therefore this supports the special theory»		2

(Question 5 continued)

6.	а	i	«-»29.8 «MeVc ⁻¹ »√		1
6.	а	ii	$E_{\pi} = \sqrt{p_{\mu}^2 c^2 + m_{\mu}^2 c^4} + p_{\nu} c \ \mathbf{OR} \ E_{\mu} = 109.8 \text{ «MeV » } \checkmark$ $E_{\pi} = \sqrt{29.8^2 + 105.7^2} + 29.8 = \text{ » } 139.6 \text{ «MeV » } \checkmark$	Final value to at least 3 sig figs required for mark.	2
6.	b		139.6MeVc ⁻² ✓	Units required. Accept 140 MeVc ⁻² .	1

7.	а	$\Delta f \propto f \checkmark$		
		therefore the change is «–»3 $\Delta f \checkmark$		2
7.	b	$g = \left(c^{2} \frac{\Delta f}{f \Delta h} \right)^{2} \frac{170}{5.0 \times 10^{14} \times 10000} \checkmark$ $g = 3.1 \left(ms^{-2} \right)^{2} \checkmark$	If POT mistake, award [0] . Award [2] for BCA.	2
7.	с	the mass of the planet warps spacetime around itself \checkmark the light will follow the shortest path in spacetime «which is curved» \checkmark		2

Option B — Engineering physics

8.	а		$\Gamma \ll = Fr = 50 \times 2 \gg = 100 \ \text{(Nm)} \checkmark$ $\alpha \ll = \frac{\Gamma}{I} = \frac{100}{450} \gg = 0.22 \ \text{(rads}^{-2} \gg \checkmark$	Final value to at least 2 sig figs, OR clear working with substitution required for mark.	2
8.	b	i		Accept BCA, values in the range: 1.57 to 1.70.	1
8.	b	ii		Accept BCA, values in the range: 710 to 780.	1
8.	С		$ I = 450 + mr^2 $ $ I = 450 + 30 \times 2^2 = 570 \text{ (kgm}^2 \text{) } \text{ (} $ $ L = 570 \times \omega = 747 \text{) } $ $ \omega = 1.3 \text{ (rads}^{-1} \text{) } \text{ (} $	Watch for ECF from (a) and (b). Accept BCA, values in the range: 1.25 to 1.35.	2

(Question 8 continued)

8.	d	i	moment of inertia will decrease ✓ angular momentum will be constant «as the system is isolated» ✓ «so the angular speed will increase»		2
8.	d	ii	$\omega_t = 1.66$ from bi AND $W = \Delta E_k \checkmark$	ECF from 8(b)(i).	
			$W = \frac{1}{2} \times 450 \times 1.66^2 - \frac{1}{2} \times 570 \times 1.31^2 = 131 \text{ sJ} \text{ s} \checkmark$	Accept BCA, value depends on the answers in previous questions.	2

9.	а	$\ll p_1 V_1^{\frac{5}{3}} = p_2 V_2^{\frac{5}{3}} \gg$	Volume may be in litres or m^3 .	
		1.1×10 ⁵ ×5 ^{5/3} = $p_2 × 2^{5/3} \checkmark$ $p_2 \ll = \frac{1.1 \times 10^5 \times 5^{5/3}}{2.5^{5/3}} \gg = 5.066 \times 10^5 \ll Pa \gg \checkmark$	Value to at least 2 sig figs, OR clear working with substitution required for mark.	2

9.	b	i	$\ll W = p \Delta V \gg$	Award [0] if POT mistake.	
			$ = 5.07 \times 10^5 \times (5 \times 10^{-3} - 2 \times 10^{-3}) $		1
			$=1.52\times10^3$ «J» \checkmark		
9.	b	ii	$\Delta U = \frac{3}{2} p \Delta V = \frac{3}{2} 5.07 \times 10^5 \times 3 \times 10^{-3} = 2.28 \times 10^3 \text{ sJ} \text{ sJ}$	Accept alternative solution via T_c .	1
9.	b	iii	$Q \ll = (1.5 + 2.28) \times 10^3 = 3.80 \times 10^3 \ll J \gg \checkmark$	Watch for ECF from (b)(i) and (b)(ii).	1
9.	с	i	for isothermal process, PV = constant / ideal gas laws mentioned \checkmark since V _C >V _B , P _C must be smaller than P _B \checkmark		2
9.	C	ii	the area enclosed in the graph would be smaller \checkmark so the net work done would decrease \checkmark	Award MP2 only if MP1 is awarded.	2
9.	d		to reduce energy loss; increase engine performance; improve mpg etc \checkmark	Allow any sensible answer.	1

10.	а		in laminar flow, the velocity of the fluid is constant «at any point in the fluid» «whereas it is not constant for turbulent flow» ✓	Accept any similarly correct answers.	1
10.	b		$P_{\rm S} = P_{\rm T} \text{ (as both are exposed to atmospheric pressure)} \checkmark$ then $V_{\rm T} = 0$ (if the surface area of the reservoir is large) \checkmark ($\frac{1}{2}\rho v_{\rm S}^2 + \rho g z_{\rm S} = \rho g z_{\rm T}$) $\frac{1}{2}v_{\rm S}^2 = g(z_{\rm T} - z_{\rm S}) = gH \checkmark$ and so $v_{\rm S} = \sqrt{2gH}$	MP1 and MP2 may be implied by the correct substitution showing line 3 in the mark scheme. Do not accept simple use of $v = \sqrt{2as}$.	3
10.	C	i	$R = \frac{59.4 \times 0.6 \times 1 \times 10^3}{1.31 \times 10^{-3}} = 2.72 \times 10^7 \checkmark$	Accept use of radius 0.3 m giving value 1.36 x 10 ⁷ .	1
10.	c	ii	as $R > 1000$ it is not reasonable to assume laminar flow \checkmark		1

11.	а		damped oscillation / OWTTE		1
11.	b	i	$E \ll = \frac{1}{2} \times 30 \times \pi^2 \times 0.8^2 \gg = 95 \ll J \gg \checkmark$	Allow initial amplitude between 0.77 to 0.80, giving range between: 88 to 95 J.	1
11.	b	ii	$\Delta E = 95 - \frac{1}{2} \times 30 \times \pi^2 \times 0.72^2 = 18 \text{ sJ} \text{ sJ}$ $Q = \text{ s} 2\pi \frac{95}{18} = \text{ s} 33 \text{ sJ}$	Accept values between 0.70 and 0.73, giving a range of ΔE between 22 and 9, giving Q between 27 and 61. Watch for ECF from (b)(i).	2

Option (с — I	Imaging
----------	-------	---------

12.	а	i	image is real «as projected on a screen» ✓		1
12.	а	ii		Accept answer 7.7«D».	3
12.	а	iii	refractive index depends on wavelength \checkmark light of different wavelengths have different focal points / refract differently \checkmark there will be coloured fringes around the image <i>I</i> image will be blurred \checkmark		3
12.	b		any 2 correct rays to find image from lens 1 \checkmark ray to locate F ₂ \checkmark Focal length = «–»70«cm» \checkmark	Accept values in the range: 65cm to 75cm. Accept correct MP3 from accepted range also if working is incorrect or unclear, award [1] .	3

13.	а		$ sin c = \frac{1.34}{1.56} $ c = 59.2	Accept values in the range: 59.0 to 59.5. Accept answer 1.0 rad.	1
13.	b		optic fibres are not susceptible to earthing problems ✓ optic fibres are very thin and so do not require the physical space of electrical cables ✓ optic fibres offer greater security as the lines can not be tapped ✓ optic fibres are not affected by external electric/magnetic fields/interference ✓ optic fibres have lower attenuation than electrical conductors / require less energy✓ the bandwidth of an optic fibre is large and so it can carry many communications at once/in a shorter time interval /faster data transfer ✓		2 max
13.	с	i	a signal that is wider and lower, not necessarily rectangular, but not a larger area \checkmark		1
13.	С	ii	attenuation = $-1.24 \times 3.4 \ll -4.216 dB \gg \checkmark$ $-4.216 = 10 \log \frac{I}{15} \checkmark$ $I = 5.68 \ll W \gg \checkmark$	Need negative attenuation for MP1, may be shown in MP2. For MP3 answer must be less than 15mW (even with ECF) to earn mark. Allow [3] for BCA.	3

(Question 13 continued)

13.	C	iii	refractive index near the edge of the core is less than at the centre \checkmark speed of rays which are reflected from the cladding are greater than the speed of rays which travel along the centre of the core \checkmark	
			the time difference for the rays that reflect from the cladding layer compared to those that travel along the centre of the core is less	3 max
			OR	
			the signal will remain more compact/be less spread out /dispersion is lower \checkmark	
			bit rate of the system may be greater \checkmark	

14.	а	crystal vibration /piezo-electric effect \checkmark caused by an alternating potential difference is applied across a crystal \checkmark		2
14.	b	 ADVANTAGES the wavelength must be less than the size of the object being imaged to avoid diffraction effects ✓ the frequency must be high to ensure several full wavelengths in the pulse ✓ DISADVANTAGES the depth of the organ being imaged must be considered (no more than 200 wavelengths) ✓ attenuation increases at higher frequencies ✓ 	[1] for advantages, [1] for disadvantages.	2 max
14.	С	X-rays are an ionizing radiation and so might cause harm to the developing fetus. OR there are no known harmful effects when using ultrasound √	Ignore "moving images by ultrasound".	1

(Question 14 continued)

14.	d	i	$\rho = \frac{1.99 \times 10^6}{1.73 \times 10^3} = 1.15 \times 10^3 \text{ w kgm}^{-3} \text{ w } \checkmark$		1
14.	d	ii	$F = \frac{(1.99 \times 10^6 - 4.3 \times 10^2)^2}{(1.99 \times 10^6 + 4.3 \times 10^2)^2} = 1.0 \checkmark$	Need to explain that more is transmitted through gel-skin surface for MP4.	
			$F = \frac{(1.48 \times 10^{6} - 1.99 \times 10^{6})^{2}}{(1.48 \times 10^{6} + 1.99 \times 10^{6})^{2}} = 0.02 \checkmark$		л
			almost 100% of the ultrasound will be reflected from the air-skin surface OR almost none is transmitted \checkmark		+
			whereas only 2 % will be reflected from the gel-skin surface and so a much greater proportion is transmitted \checkmark		

Option D — Astrophysics

15.	а	i	a galaxy is much larger in size than a solar system \checkmark	Any other valid statement.	
			a galaxy contains more than one star system / solar system \checkmark		1 max
15.	а	ii	a comet is a small icy body whereas a planet is mostly made of rock or gas \checkmark		
			a comet is often accompanied by a tail/coma whereas a planet is not \checkmark		
			comets (generally) have larger orbits than planets \checkmark		1 max
			a planet must have cleared other objects out of the way in its orbital neighbourhood \checkmark		

16.	а	i	the wavelengths of the dips correspond to the wavelength in the emission spectrum ✓ the absorption lines in the spectrum of star X suggest it contains predominantly hydrogen OR		2
			main sequence stars are rich in hydrogen \checkmark		
16.	а	ii	peak wavelength: $290 \pm 10 \text{ snm} \text{ solution}$ $T = \frac{2.9 \times 10^{-3}}{290 \times 10^{-9}} = \text{ solution} 400 \text{ K} \text{ solution}$	Substitution in equation must be seen. Allow ECF from MP1.	2

(Question 16 continued)

16.	b	i	$35\pm5L_{s}$ \checkmark		1
16.	b	ii	$\frac{L_x}{L_s} = \frac{R_x^2 \times T_x^4}{R_s^2 \times T_s^4}$ OR $R_x = \sqrt{\frac{L_x T_s^4}{L_s T_x^4}} \times R_s \checkmark$ $R_\chi = \sqrt{\frac{35 \times 6000^4}{10000^4}} \times R_s \text{ (mark for correct substitution)} \checkmark$ $R_\chi = 2.1 R_s \checkmark$	Allow ECF from (b)(i). Accept values in the range: 2.0 to $2.3R_s$. Allow T _s in the range: 5500 K to 6500 K.	3
16.	b	iii	$M_{\rm X} = (35)^{\frac{1}{3.5}} M_{\rm s} \checkmark$ $M_{\rm X} = 2.8 M_{\rm s} \checkmark$	Allow ECF from (b)(i). Do not accept $M_{\chi} = (35)^{\frac{1}{3.5}}$ for first marking point. Accept values in the range: 2.6 to 2.9M _s .	2
16.	С		the star «core» collapses until the «inward and outward» forces / pressures are balanced \checkmark the outward force / pressure is due to electron degeneracy pressure «not radiation pressure» \checkmark		2

17.	а	experiments and collecting data are extremely costly \checkmark data from many projects around the world can be collated \checkmark	OWTTE	1 max
17.	b	$v = arc = 0.19 \times 3 \times 10^8 = b.7 \times 10^7 \ arcmss{-1} \ brackstructure{ms} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Correct units must be present for MP2 to be awarded. Award [2] for BCA.	2
17.	C	ALTERNATIVE 1 $\frac{R_{\text{now}}}{R_{\text{then}}} = 1 + z = 1.19 \checkmark$ so (assuming constant expansion rate) $\frac{t_{\text{now}}}{t} = 1.19 \checkmark$ $t = \frac{14}{1.19} = 11.7$ By = 12 «By (billion years)» ✓ ALTERNATIVE 2 light has travelled a distance: $(810 \times 10^6 \times 3.26 =)2.6 \times 10^9$ ly ✓ so light was emitted: 2.6 billion years ago ✓ so the universe was 11.4 billion years old ✓	MP1 can be awarded if MP2 clearly seen. Accept 2.5×10 ²⁵ m for MP1. MP1 can be awarded if MP2 clearly seen.	3

18.	а		a white dwarf accretes mass «from a binary partner» \checkmark when the mass becomes more than the Chandrasekhar limit (1.4M _s) «then a supernova explosion takes place» \checkmark		2
18.	b	i	$d = \sqrt{\frac{L}{4\pi b}} = \sqrt{\frac{5 \times 10^5 \times 3.8 \times 10^{26}}{4\pi \times 1.6 \times 10^{-6}}} \checkmark$ $d = 3.07 \times 10^{18} \text{ cm} \checkmark$	At least 3 sig fig required for MP2.	2
18.	b	ii	type Ia supernova can be used as standard candles \checkmark there is no dust absorbing light between Earth and supernova \checkmark their supernova is a typical type Ia \checkmark		1 max

19.	а	$\frac{mv^2}{r} = \frac{GMm}{r^2}$ and correct rearranging \checkmark	1
19.	b	linear /rising until $R_0 \checkmark$ then «almost» constant \checkmark	2
19.	С	for <i>v</i> to stay constant for <i>r</i> greater than <i>R</i> ₀ , <i>M</i> has to be proportional to $r \checkmark$ but this contradicts the information from the <i>M</i> - <i>r</i> graph \checkmark <i>OR</i> if <i>M</i> is constant for <i>r</i> greater than <i>R</i> ₀ , then we would expect $v \propto r^{\frac{-1}{2}} \checkmark$ but this contradicts the information from the <i>v</i> - <i>r</i> graph \checkmark	2 max