

Markscheme

May 2018

Physics

Higher level

Paper 2

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

C	Questi	on	Answers	Notes	Total
1.	а		use of conservation of energy OR $v^2 = u^2 + 2as \checkmark$ $v = \sqrt[4]{2 \times 60.0 \times 9.81} = 34.3 \text{ cms}^{-1} \checkmark$		2
1.	b	i	use of impulse $F_{ave} \times \Delta t = \Delta p$ OR use of $F = ma$ with average acceleration OR $F = \frac{80.0 \times 34.3}{0.759}$ 3620 «N» ✓	Allow ECF from (a).	2
1.	b	ii	upwards ✓ clearly longer than weight ✓	For second marking point allow ECF from (b)(i) providing line is upwards.	2
1.	b	iii	3620 + 80.0 × 9.81 ✓ 4400 «N» ✓	Allow ECF from (b)(i).	2

(Question 1 continued)

1.	С	i	(loss in) gravitational potential energy (of block) into kinetic energy (of block) ✓	Must see names of energy (gravitational potential energy and kinetic energy) – Allow for reasonable variations of terminology (eg energy of motion for KE).	1
1.	С	ii	(loss in) gravitational potential and kinetic energy of block into elastic potential energy of rope ✓	See note for 1(c)(i) for naming convention.	
				Must see either the block or the rope (or both) mentioned in connection with the appropriate energies.	1
1.	d		k can be determined using EPE = $\frac{1}{2}kx^2$ \checkmark		
			correct statement or equation showing	Candidate must clearly indicate the	
			GPE at A = EPE at C	energy associated with either position A or B for MP2.	2
			OR		
			(GPE + KE) at B = EPE at C ✓		

(Question 1 continued)

1.	е	i	$T = 2\pi \sqrt{\frac{80.0}{400}} = 2.81$ «s» \checkmark time = $\frac{T}{4} = 0.702$ «s» \checkmark	Award [0] for kinematic solutions that assume a constant acceleration.	2
1.	е	ii	ALTERNATIVE 1 $\omega = \frac{2\pi}{2.81} = 2.24 \text{wrads}^{-1} \text{w} \checkmark$ $v = 2.24 \times 3.50 = 7.84 \text{wms}^{-1} \text{w} \checkmark$ ALTERNATIVE 2 $\frac{1}{2} kx^2 = \frac{1}{2} mv^2 \text{OR} \frac{1}{2} 400 \times 3.5^2 = \frac{1}{2} 80v^2 \checkmark$ $v = 7.84 \text{wms}^{-1} \text{w} \checkmark$	Award [0] for kinematic solutions that assume a constant acceleration. Allow ECF for T from (e)(i).	2

2.	а		«3.0×8.31×290 0.15 48 «kPa» ✓		1
2.	b	i	mass = $\frac{860}{3100 \times 23}$ = $ > 0.012 $ «kg» ✓		1
2.	b	ii	average kinetic energy = $\frac{3}{2}$ 1.38×10 ⁻²³ ×313 = 6.5×10 ⁻²¹ «J» ✓ number of particles = $3.0 \times 6.02 \times 10^{23} = 1.8 \times 10^{24}$ ✓ total kinetic energy = $1.8 \times 10^{24} \times 6.5 \times 10^{-21} = 12$ «kJ» ✓ ALTERNATIVE 2 ideal gas so $U = KE$ ✓ $KE = \frac{3}{2}8.31 \times 313 \times 3$ ✓ total kinetic energy = 12 «kJ» ✓		3
2.	С		larger temperature implies larger (average) speed/larger (average) KE of molecules/particles/atoms ✓ increased force/momentum transferred to walls (per collision) / more frequent collisions with walls ✓ increased force leads to increased pressure because P=F/A (as area remains constant) ✓	Ignore any mention of PV=nRT	3

3.	а	i	superposition of light from each slit / interference of light from both slits \checkmark with path/phase difference of any half-odd multiple of wavelength/any odd multiple of π (in words or symbols) \checkmark producing destructive interference \checkmark	Ignore any reference to crests and troughs.	3
3.	а	ii	light waves (from slits) must have constant phase difference / no phase difference / be in phase ✓	OWTTE	1
3.	а	iii	evidence of solving for $D \cdot D = \frac{sd}{\lambda}$ \checkmark $ \frac{4.50 \times 10^{-3} \times 0.300 \times 10^{-3}}{633.0 \times 10^{-9}} \times 2 = 4.27 \text{ m} $	Award [1] max for 2.13 m.	2

(Question 3 continued)

3.	b	i	$\sin \theta = \frac{4 \times 633.0 \times 10^{-9}}{0.300 \times 10^{-3}} \checkmark$ $\theta = 0.0084401 \checkmark$ final answer to three sig figs (eg 0.00844 or 8.44 x 10 ⁻³) \\$	Allow ECF from (a)(iii). Award [1] for 0.121 rad (can award MP3 in addition for proper sig fig) Accept calculation in degrees leading to 0.481 degrees. Award MP3 for any answer expressed to 3sf.	3
3.	b	ii	use of diffraction formula $\mathbf{w}b = \frac{\lambda}{\theta}\mathbf{w}$ OR $\frac{633.0 \times 10^{-9}}{0.00844} \checkmark$ $\mathbf{w} = \mathbf{w} \cdot 7.5 \times 00 \times 10^{-2} \times 10^{$	Allow ECF from (b)(i).	2

(Question 3 continued)

3.	С		wavelength increases (so frequency decreases) / light is redshifted ✓ galaxy is moving away from Earth ✓	Allow ECF for MP2 (ie wavelength decreases so moving towards).	2
3.	d	i	$\frac{633.0}{1.33} = 476 \text{ «nm» } \checkmark$		1
3.	d	ii	distance between peaks decreases ✓ intensity decreases ✓		2

4.	а		1.7×10 ⁻⁸ × $\frac{0.10}{(0.02×10^{-2})^2}$ ✓ 0.043 «Ω» ✓		2
4.	b		$V = \frac{I}{neA} = \frac{2.0}{8.5 \times 10^{22} \times 1.60 \times 10^{-19} \times 0.02^{2}}$ $0.37 \text{ (cm s}^{-1}) \checkmark$		2
4.	С	i	$V = RI = 0.086 \text{ «V » } \checkmark$ $\frac{V}{d} = \frac{0.086}{0.10} = 0.86 \text{ «V m}^{-1} \text{» } \checkmark$	Allow ECF from 4(a). Allow ECF from MP1.	2
4.	С	ii	clear use of Ohm's Law ($V=IR$) ✓ clear use of $R = \frac{\rho L}{A}$ ✓ combining with $I = nAve$ and $V = EL$ to reach result. ✓ ALTERNATIVE 2 attempts to substitute values into equation. ✓ correctly calculates LHS as 4.3×10^9 . ✓ correctly calculates RHS as 4.3×10^9 . ✓	For ALTERNATIVE 1 look for: $V = IR$ $R = \frac{\rho L}{A}$ $V = EL$ $I = nAve$ $V = I\frac{\rho L}{A}$ $EL = I\frac{\rho L}{A}$ $E = I\frac{\rho}{A}$ $E = nAve\frac{\rho}{A} = nve\rho$ $\frac{v}{E} = \frac{1}{ne\rho}$	3

5.	а		out of the page plane / ⊙ ✓	Do not accept just "up" or "outwards".	1
5.	b		$1.60 \times 10^{-19} \times 6.8 \times 10^{5} \times 8.5 = 9.2 \times 10^{-13} \text{ «N» } \checkmark$		1
5.	С	i	the magnetic force does not do work on the electron hence does not change the electron's kinetic energy OR the magnetic force/acceleration is at right angles to velocity ✓		1
5.	С	ii	the velocity of the electron is at right angles to the magnetic field \checkmark (therefore) there is a centripetal acceleration / force acting on the charge \checkmark	OWTTE	2

6.	а		$^{10}_{4}$ Be → $^{10}_{5}$ B + $^{0}_{1}$ e + $^{0}_{0}$ \overline{V}_{e} antineutrino <i>AND</i> charge <i>AND</i> mass number of electron $^{0}_{1}$ e, \overline{V} ✓ conservation of mass number <i>AND</i> charge $^{10}_{5}$ B, $^{10}_{4}$ Be ✓	Do not accept V . Accept \overline{V} without subscript e.	2
6.	b	i	correct shape ie increasing from 0 to about $0.80\mathrm{N}_0$ \checkmark crosses given line at $0.50\mathrm{N}_0$ \checkmark number of nuclei $ N_0 = \frac{1}{0.75\mathrm{N}_0} = \frac{1}{0.25\mathrm{N}_0} = \frac{1}{0.25\mathrm{N}_0$		2

(Question 6b continued)

6.	b	ii	ALTERNATIVE 1	Must see at least one extra sig fig in final answer.	
			fraction of Be = $\frac{1}{8}$, 12.5%, or 0.125 \checkmark		
			therefore 3 half lives have elapsed ✓		
			$t_{\frac{1}{2}} = \frac{4.3 \times 10^6}{3} = 1.43 \times 10^6 \text{w} \approx 1.4 \times 10^6 \text{w} \text{wy} $		
			ALTERNATIVE 2		3
			fraction of Be = $\frac{1}{8}$, 12.5%, or 0.125 \checkmark		
			$\frac{1}{8} = e^{-\lambda} \left(4.3 \times 10^6 \right) \text{ leading to } \lambda = 4.836 \times 10^{-7} \text{ «y}^{-1} \text{»} \checkmark$		
			$\frac{ln2}{\lambda} = 1.43 \times 10^6 \text{ «y» } \checkmark$		
6.	b	iii	$\lambda \ll \frac{\ln 2}{1.4 \times 10^6} = 4.95 \times 10^{-7} \ll y^{-1} $	Allow ECF from MP1	
			rearranging of $A = \lambda N_0 e^{-\lambda t}$ to give $-\lambda t = \ln \frac{8.0 \times 10^{-3} \times 365 \times 24 \times 60 \times 60}{4.95 \times 10^{-7} \times 7.6 \times 10^{11}} = -0.400$ »		3
			$t = \frac{-0.400}{-4.95 \times 10^{-7}} = 8.1 \times 10^5 \text{ «y» } \checkmark$		

(Question 6 continued)

6.	С	i	emission of (infrared) electromagnetic/infrared energy/waves/radiation. 🗸		1
6.	С	ii	the (peak) wavelength of emitted em waves depends on temperature of emitter/reference to Wein's Law ✓ so frequency/color depends on temperature ✓		2
6.	С	iii	$\lambda = \frac{2.90 \times 10^{-3}}{253} \checkmark$ = 1.1×10 ⁻⁵ «m» \checkmark	Allow ECF from MP1 (incorrect temperature).	2
6.	С	iv	from the laboratory to the sample ✓ conduction – contact between ice and lab surface. OR convection – movement of air currents ✓	Must clearly see direction of energy transfer for MP1. Must see more than just words "conduction" or "convection" for MP2.	2
6.	С	v	correct units for Intensity (allow <i>W, Nms</i> ⁻¹ <i>OR Js</i> ⁻¹ <i>in numerator</i>) ✓ rearrangement into proper SI units = kgs ⁻³ ✓	Allow ECF for MP2 if final answer is in fundamental units.	2

7.	а	$d = \frac{8.85 \times 10^{-12} \times 0.025^{2}}{4.3 \times 10^{-12}} = 1.3 \times 10^{-3} \text{ m/s} \checkmark$	1
7.	b	6.9 x 10 ⁻¹¹ < <c>> ✓ negative charge/sign ✓</c>	2
7.	С	charge increases ✓ because capacitance increases <i>AND</i> pd remains the same.✓	2

(Question 7 continued)

7.	d	ALTERNATIVE 1	Allow ECF from MP1 and MP2.	
		$\varepsilon_s = \frac{1200}{100} \times 220 \checkmark$	Award [2] max for 12.96 V (reversing N_p and N_s).	
		= 2640 «V» ✓		
		$V_{rms} = \frac{2640}{\sqrt{2}} = 1870 \text{ «V» } \checkmark$		_
		ALTERNATIVE 2		3
		(Primary) $V_{rms} = \frac{220}{\sqrt{2}} = 156 \text{ eV}$		
		(Secondary) $V_{rms} = \frac{156 \times 1200}{100} \checkmark$		
		V _{rms} = 1870 «V» √		
7.	е	step-up transformers increase voltage/step-down transformers decrease voltage ✓		
		(step-up transformers increase voltage) from plants to transmission lines / (step-down transformers decrease voltage) from transmission lines to final utilizers \checkmark		3 max
		this decreases current (in transmission lines) ✓		2
		to minimize energy/power losses in transmission ✓		

8.	а		$E_1 = -13.6 \text{ eV}$ $E_2 = -\frac{13.6}{4} = -3.4 \text{ eV}$ \checkmark energy of photon is difference $E_2 - E_1 = 10.2 \text{ ex} \approx 10 \text{ eV}$ \checkmark	Must see at least 10.2 eV.	2
8.	b	i	$10-5.1=4.9 \text{ «eV» } \checkmark$ $4.9\times1.6\times10^{-19}=7.8\times10^{-19} \text{ «J» } \checkmark$	Allow 5.1 if 10.2 is used to give 8.2×10 ⁻¹⁹ «J» .	2
8.	b	ii	EPE produced by battery ✓ exceeds maximum KE of electrons / electrons don't have enough KE ✓	For first mark, accept explanation in terms of electric potential energy difference of electrons between surface and plate.	2
8.	b	iii	4.9«V» ✓	Allow 5.1 if 10.2 is used in (b)(i). Ignore sign on answer.	1

(Question 8 continued)

8.	С	i	two equally spaced vertical lines (judge by eye) at approximately 1/3 and 2/3√ labelled correctly ✓		
			photoelectric surface collecting plate O V = variable voltage source		2
8.	С	ii	kinetic energy at collecting plate = $0.9 \text{ «eV} \text{»} \checkmark$ $\text{speed} = \text{«}\sqrt{\frac{2 \times 0.9 \times 1.6 \times 10^{-19}}{9.11 \times 10^{-31}}} \text{»} = 5.6 \times 10^{5} \text{ «ms}^{-1} \text{»} \checkmark$	ECF from MP1	2