

Markscheme

November 2015

Physics

Higher level

Paper 3

17 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

-2-

Subject Details: Physics HL Paper 3 Markscheme

Mark Allocation

Candidates are required to answer questions from **TWO** of the Options $[2 \times 30 \text{ marks}]$. Maximum total = [60 marks].

- **1.** A markscheme often has more marking points than the total allows. This is intentional.
- 2. Each marking point has a separate line and the end is shown by means of a semicolon (;).
- **3.** An alternative answer or wording is indicated in the markscheme by a slash (/). Either wording can be accepted.
- 4. Words in brackets () in the markscheme are not necessary to gain the mark.
- **5.** Words that are <u>underlined</u> are essential for the mark.
- 6. The order of marking points does not have to be as in the markscheme, unless stated otherwise.

Option E — Astrophysics

- 1. (a) the star is (much) closer than the other star (and close enough to Earth) / parallax effect has been observed;
 - (b) (i) θ

[1]

[1]

Award **[1]** if all three (d, D, θ) are shown correctly. Accept D as a line from Earth to the star.

(ii) $\sin\frac{\theta}{2} = \frac{d}{2D} \ or \ \tan\frac{\theta}{2} = \frac{d}{2D} \ or \ \theta = \frac{d}{D};$

consistent explanation, eg: small angle of approximation yields $\theta = \frac{d}{D}$; [2]

- (iii) any angular unit quoted for θ and any linear unit quoted for D; [1]
- (c) this star is less than 1000 pc away/in our galaxy;
 Hubble's law is for galaxies (not local stars) / red-shift will be too small to measure / uncertainty in Hubble constant high for such measurement;
 [2]

- (a) HR diagram refers to real stars / absolute magnitude depends on (inherent) properties of the star / absolute magnitude is a measure of brightness at a distance of 10 pc: any relevant info about apparent magnitude, eg: apparent magnitude depends on distance: [2] to cover a wide range of orders of magnitude; (b) smaller values would be lost on a linear scale / the logarithmic scale allows more stars to be shown on the diagram (making the diagram more relevant); [2] $\frac{L_{\rm V}}{L_{\rm S}} = \left(\frac{\sigma A_{\rm V} [T_{\rm V}]^4}{\sigma A_{\rm S} [T_{\rm S}]^4}\right) \frac{\sigma [r_{\rm V}]^2 [T_{\rm V}]^4}{\sigma [r_{\rm S}]^2 [T_{\rm S}]^4};$ (C) $\frac{1.54 \times 10^{28}}{3.85 \times 10^{26}} = \frac{[r_V]^2}{[r_0]^2} \times \frac{9600^4}{5800^4};$ $r_{\rm V} = \left(\sqrt{\frac{1.54 \times 10^{28}}{3.85 \times 10^{26}} \times \frac{5800^4}{9600^4}} r_{\rm S} = \right) 2.3 r_{\rm S};$ [3] (d) obtain the spectrum of the star; measure the position of the wavelength corresponding to maximum intensity; use Wien's law (to determine temperature); (allow quotation of Wien's equation if symbols defined) [3] Award [3 max] for referring to identification of temperature via different ionizations of different elements. insufficient hydrogen (to continue fusion); (e) (i) star collapses (under gravity); temperature increases; initiated fusion of helium, (energy released causes) rapid expansion of star; [4] rapid expansion / increase of size; (ii) decrease in temperature / cooler stars appear red in colour / increase of luminosity; [2] (i) $T = \frac{2.90 \times 10^{-3}}{\lambda_{\text{max}}} = \frac{2.90 \times 10^{-3}}{1.06 \times 10^{-3}};$ (a) = 2.7 K: [2] current low temperature observed is a result of expansion; (ii) (expansion) has caused cooling from high temperatures; [2] (b) (i) $\left(\frac{\Delta\lambda}{\lambda}=\frac{v}{c}\Rightarrow\right)v=\left(\frac{3.00\times10^8\times74}{656}=\right)3.38\times10^7\,(m\,s^{-1});$ $d = \frac{v}{H_{2}} = \frac{3.38 \times 10^{4}}{69.3} = 488 \text{ Mpc};$ [2]
 - (ii) measurements from distant galaxies have large uncertainties; [1]

2.

3.

Option F — Communications

- 4. (a) the modification/change of a carrier wave by addition of a signal wave/information; [1]
 - (b) (i) (voice signal only requires) low quality; AM has lower band width requirement than FM; simpler (more reliable) circuits; range greater than FM / can bounce off the ionosphere;
 [2 max]

central band drawn at correct position; shorter side bands at correct positions;

[2]

(iii)
$$\left(\frac{0.4 \times 10^6}{80 \times 10^3}\right) = 5;$$
 [1]

 (iv) damage caused by mining for precious metals; high rate of disposal/landfill; masts detract from beauty in some areas;
 [2 max]

[4]

Allow one advantage plus argument:

always above the same point of the Earth / no tracking dish required / allows for continuous communication / outside Earth's atmosphere so last longer in orbit / can be positioned permanently in sunlight for its power supply; evidence of the mentioned / any relevant argument;

or

Allow any **two** advantages: always above the same point of the Earth; no tracking dish required; allows for continuous communication; outside Earth's atmosphere so last longer in orbit; can be positioned permanently in sunlight for its power supply;

polar-orbiting: [2 max]

Allow **one** advantage plus argument: lower orbit / less power required at both ground station and satellite / cheaper to put into orbit / coverage of whole planet over a number of orbits; evidence of the mentioned / any relevant argument;

or

Allow any **two** advantages: lower orbit; less power required at both ground station and satellite; cheaper to put into orbit; coverage of whole planet over a number of orbits; [4 max]

- (a) (i) (a digital) signal is split up for transmission and recombined at the end of the process / the signal is transmitted in pulses; other signals can be transmitted in the spaces between the pulses; [2]
 - (ii) the bit rate is higher / more data sent per unit time; faster transmission of data; making use of empty space between samples;
 [1 max]
 - (b) time between samples = $\frac{1}{4000}$ = 250 µs; duration of sample = 8 bit × 8 µs = 64 µs; number of samples transmitted = $\frac{250}{64}$ = 3.9 signals; so three signals maximum;

(c) attenuation =
$$0.08 \times 30.0 (= 2.4 \text{ dB})$$
;
 $2.4 = 10 \log \left(\frac{I_1}{2 \text{ mW}} \right)$;
 $I_1 = 3.5 \text{ mW}$; [3]

 $>V_{\rm IN}$

6.

general shape of graph correct; straight line between -2.5 V and 2.5 V; plateau at -15 V and +15 V beyond this;

(b) switch over happens when non-inverting input $\geq 5 V$;

current through the
$$20 \,\mathrm{k\Omega} = \left(\frac{5 - (-15)}{20 \times 10^3} = \frac{20}{20 \times 10^3} = \right) 1 \,\mathrm{mA}$$
;
 $V_{\mathrm{IN}} = (5 + [1 \,\mathrm{mA} \times 4 \,\mathrm{k\Omega}] = 5 + 4 =) 9 \,\mathrm{V}$;

- 8 -

[2]

[3]

[3]

Option G — Electromagnetic waves

 (a) sky is blue due to scattering of light from Sun (by particles, nitrogen molecules); blue scatters better / as the atmosphere (becomes) less dense less scattering occurs;

(finally) the sun's light is not scattered and "the sky" is black (meaning no light between point light sources);

(b) natural frequency of carbon dioxide = $\left(\frac{1}{5 \times 10^{-14}}\right) 2 \times 10^{13}$ Hz;

infrared from the Sun is well outside this value so transmitted; infrared from the Earth is close to this value so absorbed/scattered/trapped;

any correct ray out of the three shown above; second ray correct; image correctly located and labelled;

[3]

[2]

(ii) the image is virtual; no light rays pass through this point;

(b)
$$\frac{1}{u} = \frac{1}{f} - \frac{1}{v};$$

 $u = \frac{20}{3};$
 $m = \left(-\frac{v}{u} = -\frac{60}{20}\right)(-3);$

[3]

[3]

[3]

[2]

9. (a) single slit before the double slit / use a laser light / single source; [1]
(b) destructive interference;
path lengths from slits differ by half a wavelength;
waves arrive antiphase / 180° out of phase /
$$\pi$$
 out of phase; [2 max]
(c) (i) $\theta_{blue} = \left(\frac{\theta_{red}\lambda_{blue}}{\lambda_{red}} = \frac{0.0045 \times 440 \text{ nm}}{660 \text{ nm}} = \right) 0.0030 \text{ rad};$
 $\Delta \theta_{blue} = (0.0045 - 0.0030 =) 0.0015 \text{ rad};$ [2]
(ii) marking direction of shift on the diagram; [1]

– 10 –

10. (a)
$$\lambda_{\min} = \left(\frac{hc}{eV} = \frac{6.63 \times 10^{-34} \times c}{1.6 \times 10^{-19} \times 50 \times 10^3} = \right) 8.29 \times 10^{-20} c \text{ or } 2.49 \times 10^{-11} \text{ m};$$

 $f_{\max} = \left(\frac{c}{\lambda_{\min}} = \frac{c}{8.29 \times 10^{-20} c} = \right) 1.2 \times 10^{19} \text{ Hz};$
[2]

 (c) there would be a full wavelength within the film; but the phase change at the first surface means that there is always destructive interference;

11.

Option H — Relativity

(b)

12. (a) a coordinate system;
that is not accelerating / where Newton's first law applies;[2]

(i)
$$\gamma = \left[\frac{1}{\sqrt{1-0.8^2}} = \right] 1.67;$$

 $\Delta t_0 = \left[\frac{3}{1.67} = \right] 1.8 \text{ s};$
[2]

(ii)
$$u'_{x} = \frac{0.8c - [-0.8]c}{1 + 0.8^2} (= 0.976c);$$

 $\gamma = \frac{1}{\sqrt{1 - 0.976^2}} (= 4.56);$
 $l_0 = (4.56 \times 8.0 =)36 \text{ m};$
[3]

(c) (i)
$$t = \frac{s}{v} = \frac{11.4}{0.8} = 14.25$$
 years;
 $\Delta t_0 = \frac{\Delta t}{\gamma} = \frac{14.25}{1.67} = 8.6$ years;
Accept length contraction with the same result.
[2]

(ii) situation is not symmetrical;
 Suzanne must undergo acceleration (when changing direction) but Juan does not;
 [2]

graph starting at E = 494 when $\frac{v}{c} = 0$ or a roughly horizontal line drawn until at least 0.4 c;

rises sharply/becomes asymptotic as
$$\frac{v}{c}$$
 approaches 1; [2]

(ii)
$$E_{\kappa} = 2 \times 494 \text{ MeV} = 988 \text{ MeV};$$

potential difference = $988 \times 10^6 \text{ V}$ or $1 \times 10^9 \text{ V};$ [2]

(b)
$$pc = \left(\sqrt{\left[\frac{E}{2}\right]^2 - m_0^2 c^4} = \right) \sqrt{\left[\frac{498}{2}\right]^2 - 135^2};$$

 $p = 209 \,\text{MeV} \,\text{c}^{-1};$
[2]

- 14. (a) (according to a Galilean transformation) speed of light depends on the direction of motion (through the ether); beam which reflects from mirror M₁ takes different/less time than the beam reflecting from M₂; the time taken to travel each path will change as the apparatus is rotated; a changing interference pattern is observed; [4]
 (b) there was no change (in the interference pattern observed); [1]
 - (c) the speed of light doesn't depend on motion (through the ether) / there is no ether;
 the speed of light (in a vacuum) is the same for all inertial observers;

15.	(a)	(i)	$\frac{3.20}{4.52 \times 10^{14}} = \frac{g \times 112}{c^2};$	
			$g = 5.69 \mathrm{N}\mathrm{kg}^{-1};$	[2]
		(ii)	as photon moves away from the surface of the planet it gains gravitational potential energy;	
		E = hf the frequency has become lower (to compensate for this change)	[2]	
	(b)	the equivalence principle states that it is impossible to distinguish between an accelerating reference frame and a gravitational field; therefore the frequency observed will be the same; <i>Accept combined effect if spacecraft still in the gravitational field.</i>		[2]

Option I — Medical physics

16.	(a)	 hearing loss at all frequencies; most marked between 1–4 kHz / higher frequencies; 		
	(b)	(i)	minimum intensity audible to an average person; of a pure tone / at 1000 Hz;	[2]
		(ii)	IL = 32 dB; (accept answers in the range of 31 to 33 dB)	
			$32 = 10 \log \left(\frac{I}{1.0 \times 10^{-12}} \right);$	
			$I = 1.6 \times 10^{-9} \mathrm{W m^{-2}}$;	[3]
			Final answer could range from 1.3×10^{-9} to 2.0×10^{-9} depending on the value chosen for the first marking point.	
	(C)	embarrassment/frustration/misinterpretation; (allow other valid suggestions)		
		pote fulfil	ential limitations of employment (some roles cannot be <i>(allow other valid</i> led) / cost of hearing aid technology; <i>f economic implications)</i>	[2]
17.	(a)	<i>physical half-life</i> : is time for activity of a radioactive sample to drop to a half due to nuclear decay;		
		<i>biolo</i> is th phys	ogical half-life: e time for amount of a substance in the body to drop to a half due to siological/biological processes;	[2]
	(b)	(in s	ix days three physical half-lives elapse, so $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$ remains in body;	
		(two	biological half-lives elapse, so activity drops to $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$ remains in body;	
		(so a	activity remaining in body is) $\frac{1}{8} \times \frac{1}{4}$ or $\frac{1}{32}$ or 0.031 of original activity;	[3]
		OR		
		$\frac{1}{T_{\rm E}}$ =	$= \left(\frac{1}{T_{\rm P}} + \frac{1}{T_{\rm B}} = \frac{1}{2.0} + \frac{1}{3.0} = \right) \frac{5}{6};$	
		T _E =	= 1.2 (days);	
		(in 6	5.0 days there are 5 half-lives), so fraction remaining is $\left[\frac{1}{2}\right]^5 = \frac{1}{32}$ or 0.031;	
	(C)	radia thus	ation from the tracer must be measurable (and ideally fairly constant); reduction in activity largely comes from biological processes;	[2]

18.	(a)	(i)	product of the density of a substance and the speed of sound in that substance;	[1]
		(ii)	if impedance is not matched, large percentage of energy loss at interface; difference in acoustic impedances necessary for imagery/reflection from organs;	[1 max]
	(b)	atter reso	nuation increases with frequency / deeper objects require lower frequencies; lution increases with frequency;	
		bala	nce required between energy loss/attenuation and image quality/resolution;	[3]
19.	(a)	the t	thickness which will reduce the intensity of the radiation to a half;	[1]
	(b)	gene valu I inte	eral exponential decay shape drawn; e approximately halves at 3, 6, and 9 cm; ercept shown, becoming asymptotic on <i>t</i> -axis;	[3]
	(c)	(i)	$\frac{I_0}{2} = I_0 e^{-\mu x_1/2}$;	
			$0.5 = e^{-\mu x_{\frac{1}{2}}} or \ln I_0 + \ln 0.5 = \ln I_0 - \mu x_{\frac{1}{2}};$	
			$x_{\frac{1}{2}} = \frac{\ln(2)}{\mu};$	[3]
			No mark for copying equation from question.	
		(ii)	0.23; cm ⁻¹ ;	[2]
			OR	
			23; m ⁻¹ ;	

– 15 –

[1]

[4]

[1]

[2]

[1]

Option J — Particle physics

 (ii) only during the weak interaction strangeness is not conserved (therefore it is a weak interaction);

(iii)
$$m = \left[80.4 \,\text{GeV}\,\text{c}^{-2} = \frac{80.4 \times 10^9}{931.5 \times 10^6} \times 1.661 \times 10^{-27} = \right] 1.43 \times 10^{-25} \,\text{kg};$$

 $R \approx \left(\frac{6.63 \times 10^{-34}}{4\pi \times 1.43 \times 10^{-25} \times 3 \times 10^8} = \right) 1.23 \times 10^{-18} \,\text{m};$ [2]

21. (a) electric field:

cyclotron: electric field alternates every half rotation of the particle; synchrotron: high frequency electric field synchronized with particle speed;

magnetic field: cyclotron: constant magnetic field; synchrotron: magnetic field increases with particle speed;

(b) mass of lead = $207 \times 931.5 = 193 \text{ GeV c}^{-2}$; $E_a^2 = 2 \times 193 \times 575 \times 10^3 + 2[193]^2 = 2.22 \times 10^8$; $E_a = 14.9 \text{ TeV}$;
[3]

22. (a) (i) a particle that mediates one of fundamental forces / a particle that appears as an intermediate particle in a Feynman diagram / a particle that is not observed and may violate energy and momentum conservation at a vertex;

electron and positron directions and symbols shown correctly; muon and antimuon directions and symbols shown correctly;

- (iii) Z^0 boson, no charge has been transferred/neutral current;
- (b) the discovery would help to verify standard model;
 the Higgs is responsible for giving mass to particles / is linked to the problem of mass; [2]

very high potential differences produce very high (kinetic) energies; 23. (a) high energy electrons have a very short wavelength; the wavelength of the electron is small enough to interact with the particles inside the proton; [3] the strong force decreases as the energy increases; (b) (at high energies) the electron appears to scatter off individual quarks; [2] (a) $0.1 \times 10^6 \times 1.6 \times 10^{-19} = \frac{3}{2} \times 1.38 \times 10^{-23} \times T$; 24. $T = 7.7 \times 10^8 \,\mathrm{K}$; [2] (although the average energy of the particles is low) some pairs of particles may (b) still have sufficient energy; [1]