

# Computer science Higher level Paper 1

Friday 4 November 2016 (afternoon)

2 hours 10 minutes

### Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Section A: answer all questions.
- Section B: answer all questions.
- The maximum mark for this examination paper is [100 marks].



[4]

[1]

### **Section A**

### Answer all questions.

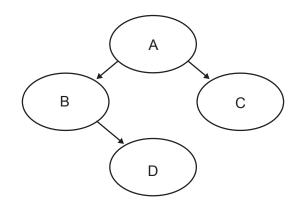
| 1. | State three potential usability issues with cell phones. |                                                                                                             |     |  |
|----|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----|--|
| 2. | (a)                                                      | State the purpose of cache memory.                                                                          | [1] |  |
|    | (b)                                                      | Draw a diagram to show the relationship between random access memory (RAM), the processor and cache memory. | [1] |  |
| 3. | Outl                                                     | ine <b>one</b> advantage and <b>one</b> disadvantage of wireless networks.                                  | [4] |  |

**4.** Construct a truth table for the Boolean expression NOT (A XOR B) AND C. Use the following headings in your table.

| А | В | с | A xor B | NOT (A XOR B) | NOT (A XOR B) AND C |     |
|---|---|---|---------|---------------|---------------------|-----|
|   |   |   |         |               |                     | [4] |

**5.** Many different people and organizations upload scientific materials to the internet. A student uses data from the internet in a science project.

Outline two ethical issues concerning this use of the internet.


6. Consider the following recursive algorithm FUN (X, N), where X and N are two integers.

```
FUN(X, N)
if N<=0 then
  return 1
else
  return X*FUN(X, N-1)
end if</pre>
```

The return statement gives the value that the algorithm generates.

- (a) Determine how many times multiplication is performed when this algorithm is executed. [1]
- (b) Determine the value of FUN (2, 3), showing all of your working. [3]
- (c) State the purpose of this recursive algorithm.

7. Consider the following binary tree.



(a) Identify all leaf nodes in this binary tree.

[1]

- (b) For this binary tree, state the result of:
  - (i) inorder tree traversal, [1]
  - (ii) postorder tree traversal. [1]

# Section B

Answer all questions.

8. A book shop has a computer at each point of sale, and also a central computer.

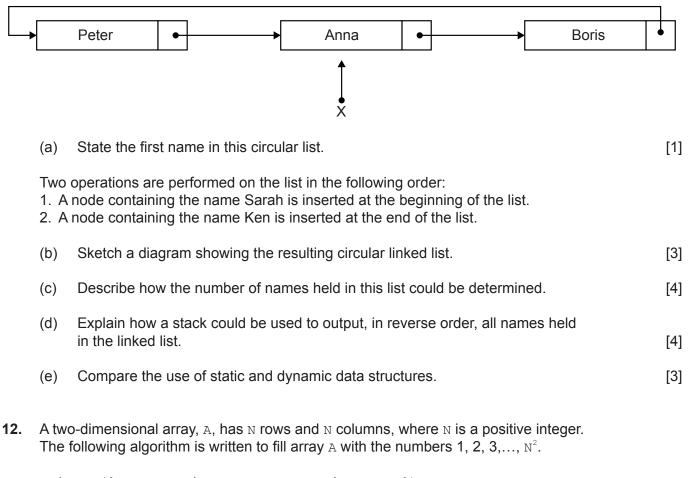
When a customer buys a book in the book shop, the salesperson at the point of sale uses a scanning device to input a barcode from the book.

The barcode is sent to the central computer where the barcode of each book and the corresponding price are held in a database on a disk.

When the price is found, it is sent to the point of sale computer where all necessary calculations are performed, details of the transaction are stored on a local disk and a receipt is printed out.

| (a)    | <ul> <li>Construct a system flow chart for the system described above.</li> </ul>        |  |  |  |  |
|--------|------------------------------------------------------------------------------------------|--|--|--|--|
| At the | e point of sale there are peripheral devices other than the scanning device and printer. |  |  |  |  |

(b) Outline the purpose of **one** other possible peripheral device in this scenario. [2]


The customers can also buy books online. A customer can select a book, and then enter their name, address and credit card number. This data is stored on the book shop's central computer in a database of customer orders.

| (C) | Outline the purpose of protocols in transferring this data. |                                                                                                       |     |  |  |
|-----|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----|--|--|
| (d) | (i)                                                         | Identify <b>two</b> sources of risk to personal data in this online system.                           | [2] |  |  |
|     | (ii)                                                        | State <b>two</b> measures that the book shop can take to address the risks identified in part (d)(i). | [2] |  |  |
|     | (iii)                                                       | Outline the consequences to the customer if their data is not adequately protected.                   | [2] |  |  |

**9.** A new higher level programming language is being developed.

|     | (a)                                                                                                                                                                                                                                                                     | Identify <b>two</b> reasons why consistent grammar and syntax should be essential features of a higher level programming language. |                                                                                                                                                                         |     |  |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|
|     | (b)                                                                                                                                                                                                                                                                     |                                                                                                                                    | fy <b>two</b> features of a user interface that will allow application programmers to ct more easily with the programming language.                                     |     |  |  |  |  |  |
|     | (C)                                                                                                                                                                                                                                                                     | State                                                                                                                              | e one method of providing user documentation.                                                                                                                           | [1] |  |  |  |  |  |
|     | Application programmers who use this programming language will be able to choose to us either an interpreter or a compiler.                                                                                                                                             |                                                                                                                                    |                                                                                                                                                                         |     |  |  |  |  |  |
|     | (d)                                                                                                                                                                                                                                                                     | (i)                                                                                                                                | Outline the need for an interpreter or a compiler.                                                                                                                      | [2] |  |  |  |  |  |
|     |                                                                                                                                                                                                                                                                         | (ii)                                                                                                                               | Describe <b>one</b> advantage to application programmers of having both an interpreter and a compiler available.                                                        | [2] |  |  |  |  |  |
|     |                                                                                                                                                                                                                                                                         |                                                                                                                                    | predefined sub-programs in the new language is $sumOdd()$ . It accepts an integer If $N\leq0$ it outputs -1, otherwise it outputs the sum of the first $N$ odd numbers. |     |  |  |  |  |  |
|     | For example: sumOdd (4) outputs 16, because 4 is not less than 0, and $1 + 3 + 5 + 7 = 16$ . sumOdd (-3) outputs -1, because -3 is less than 0.                                                                                                                         |                                                                                                                                    |                                                                                                                                                                         |     |  |  |  |  |  |
|     | (e) Construct, in pseudocode, the algorithm for sumOdd().                                                                                                                                                                                                               |                                                                                                                                    |                                                                                                                                                                         |     |  |  |  |  |  |
|     | <ul><li>(f) Outline the need for predefined sub-programs and collections.</li><li>0. The temperature, humidity, light levels and automatic watering of plants inside the greenhouses (glasshouses) of a garden centre are centrally monitored and controlled.</li></ul> |                                                                                                                                    |                                                                                                                                                                         |     |  |  |  |  |  |
| 10. |                                                                                                                                                                                                                                                                         |                                                                                                                                    |                                                                                                                                                                         |     |  |  |  |  |  |
|     | (a)                                                                                                                                                                                                                                                                     | Defir                                                                                                                              | he the term analog data.                                                                                                                                                | [1] |  |  |  |  |  |
|     | (b) With reference to sensors, transducers and the processor, explain the control pro that takes place in the greenhouse (glasshouses).                                                                                                                                 |                                                                                                                                    |                                                                                                                                                                         |     |  |  |  |  |  |
|     | (c)                                                                                                                                                                                                                                                                     | Outli                                                                                                                              | ne the role of the operating system specific to this scenario.                                                                                                          | [4] |  |  |  |  |  |
|     | (d)                                                                                                                                                                                                                                                                     |                                                                                                                                    | ribe the difference between polling and interrupt in the event that some of the ors malfunction.                                                                        | [3] |  |  |  |  |  |
|     | (e)                                                                                                                                                                                                                                                                     | Com                                                                                                                                | pare a centrally controlled system with a distributed system.                                                                                                           | [2] |  |  |  |  |  |

**11.** The diagram shows a list of names held in a circular linked list. The end of the list is pointed to by an external pointer, X.



```
N=input('Enter an integer greater than zero')
K=N*N
loop for ROW=0 to N-1
    loop for COLUMN=0 to N-1
        A[ROW][COLUMN]=K
        K=K-1
        end loop
end loop
```

(a) Trace the algorithm, with an input of N=3, to show the contents of array A after the algorithm has been executed.

[3]

#### (This question continues on the following page)

#### (Question 12 continued)

There are many different ways of placing the numbers 1 to  $N^2$  into an  $N \times N$  two-dimensional array. The following two-dimensional array, with dimensions  $5 \times 5$  has been filled in a circular (spiral) pattern with numbers 1 to  $5^2$ .

|        | LE  | FT<br>[0] | [1] | [2] | [3] | → RI0<br>[4] | GHT |
|--------|-----|-----------|-----|-----|-----|--------------|-----|
| TOP    |     | 1         | 2   | 3   | 4   | 5            |     |
|        | [1] | 16        | 17  | 18  | 19  | 6            |     |
|        | [2] | 15        | 24  | 25  | 20  | 7            |     |
|        | [3] | 14        | 23  | 22  | 21  | 8            |     |
| BOTTOM | [4] | 13        | 12  | 11  | 10  | 9            | Ļ   |
| BOTTON | I   |           |     |     |     |              |     |

The general process of filling an  $N \times N$  two-dimensional array, in a circular (spiral) pattern, with numbers from 1 to  $N^2$  could be described as follows:

- initialize z=1,
- initialize TOP, BOTTOM, LEFT and RIGHT,
- iterate until the whole array is filled,
- each time z is placed correctly increase the value of z by 1,
- fill the elements of the TOP row starting from LEFT to RIGHT,
- increase TOP by 1 before filling the elements of the RIGHT column,
- fill the elements of the RIGHT column starting from TOP to BOTTOM,
- decrease RIGHT by 1 before filling the elements of the BOTTOM row,
- and continue filling the BOTTOM row and LEFT column in a similar way, adjusting TOP, RIGHT, BOTTOM and LEFT accordingly.

| (b) | (i)   | State the initial values for TOP, BOTTOM, LEFT and RIGHT.                                                                                                      | [1] |
|-----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | (ii)  | State the consequence of not increasing TOP by 1 before starting to fill the elements of the RIGHT column.                                                     | [1] |
|     | (iii) | In the algorithm described above, state the indices (subscripts) of the first and the last element to be filled in the BOTTOM row.                             | [1] |
| (C) |       | struct, in pseudocode, an algorithm to fill an $N \times N$ two-dimensional array, in a lar (spiral) pattern, with numbers from 1 to $N^2$ as described above. | [9] |