

COMPUTER SCIENCE HIGHER LEVEL PAPER 1

Wednesday 2 May 2001 (afternoon)

2 hours

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all of Section A.
- Answer four questions from Section B.

.

SECTION A

Ansv	ver all questions.						
1.	Describe one reason why MICR might be used rather than OCR to input data.						
2.	Determine how many bits per second a device transmits if it sends 16kB of data per second (where 1 byte = 8 bits).						
3.	Identify the three types of programming error, and give an example of each.						
4.	Define the term <i>controller</i> .	[1 mark]					
5.	Outline the difference between <i>batch processing</i> and <i>on-line processing</i> , stating an example of when each would be used.	[4 marks]					
6.	Two types of error-checking during data entry are verification and validation.						
	(a) Describe verification and identify the type of error that it tries to prevent.	[3 marks]					
	(b) Describe one validation technique and identify one situation in which it might be used.	[3 marks]					
7.	Compare two aspects of the storage of numbers using integer and floating-point representations.	[4 marks]					
8.	Describe how a hashing algorithm is used to access a record in a direct access file and identify one advantage and one disadvantage of this file organisation.						
9.	Outline two uses of a stack in a computer system.	[4 marks]					
10.	Outline two features of object-oriented programming (OOP) and identify one disadvantage of OOP.	[5 marks]					

SECTION B

Answer four questions.

11. The following algorithm carries out an error-checking routine:

```
function CHECK(val DATA integer array [1..8])
result boolean
declare POS, COUNT integer
COUNT <-- 0
for POS <-- 1 upto 8 do
    if DATA[POS] = 1 then
        COUNT <-- COUNT+1
    endif
endfor
return (COUNT mod 2)=0
</pre>
```

endfunction CHECK

(a) State the result of CHECK for DATA

0	1	1	1	0	1	1	0
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]

by copying and completing the following trace table:

POS	DATA [POS] = 1	COUNT	CHECK
		0	
1	false	0	
2	true	1	
-		-	

[4 marks]

[1 mark]

(b) Deduce the result of CHECK for:

1	1	0	0	1	0	1	0	DATA	
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]		

- (c) Identify the error-checking method that the function CHECK is performing. [2 marks]
- (d) State a situation when this type of error-checking would be used. [1 mark]
- (e) Describe **one** problem with this error-checking method.

[2 marks]

[1 mark]

- 12. The standard length of a byte to store one character is 8 bits, which can represent up to 256 different characters. Writing in the Chinese language requires over 400 characters. These can be represented in a computer by increasing the number of bits used to store a character (that is, to change the size of a byte).
 - (a) State the minimum number of bits required in a byte to store 400 of the Chinese characters.
 - (b) Explain the implications of a change in the number of bits used in a byte on a computer system with respect to:

(i)	hardware.	[3 marks]
(ii)	software.	[3 marks]
(iii)	communication.	[3 marks]

13. Part of an algorithm used in a drawing package is given below:

```
if DATA[1] = 0 then
   LINE(DATA[2], DATA[3], DATA[4], DATA[5])
elsif DATA[1] = 1 then
   CIRCLE (DATA[2], DATA[3], DATA[4])
elsif DATA[1] = 2 then
   MOVE (DATA[2], DATA[3])
endif
```

Where DATA is a one-dimensional integer array of order 5, and LINE, CIRCLE and MOVE are procedures that control drawing routines.

LINE (X1, Y1, X2, Y2) outputs a straight line from the co-ordinates (X1, Y1) to (X2, Y2).

CIRCLE (X, Y, R) outputs a circle with its centre at co-ordinates (X, Y) and radius length R.

MOVE (X, Y) moves the cursor position to co-ordinates (X, Y).

(a) State the effect of using the above algorithm with the following data in DATA:

[2] [3] 12 45		[1 mark]
12 45	2 0	
[2] [3]] [4] [5] [1 mark]
		if a new module [1 mark]
		eed to be redefined to order 31 hape with 15 sides.

- (c) (i) Explain why the use of a static data structure (an array) is inefficient. [2 marks]
 - (ii) Suggest a better data structure to store the required data within the program. As part of your answer, draw a sketch of the data structure and explain why it is better than an array. [5 marks]

(b)

(a)	State one further property associated with a queue.	[1 mark]
(b)	Describe one use of a queue in a computer system.	[2 marks]
(c)	Explain the OOP term <i>encapsulation</i> with reference to the example above.	[3 marks]
(d)	The queue could be implemented using either an array or a dynamic structure with pointers. Explain the advantage of using OOP in this situation.	[4 marks]

15. The user interface of a computer system is very important and includes the display of data (such as menus), as well as any specialised input/output hardware.

(a)	Identify four factors that would be considered when selecting suitable hardware.	[4 marks]
(b)	Suggest three ways in which the design of the layout of data to be	
(c)	displayed could be decided. Explain how the interface will be tested before the final implementation.	[3 marks] [3 marks]