MARKSCHEME

May 2000

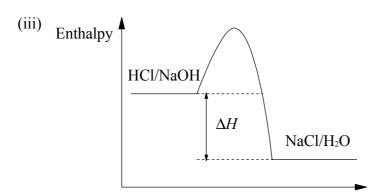
CHEMISTRY

Standard Level

Paper 2

SECTION A

1. (a) $K_c = \frac{[H^+][CN^-]}{[HCN]}$ [2] (Award [1 mark] for products as numerator reactants as denominator; award [1 mark] for correct symbols.) $HCN > CH_3COOH > HF > HCl$ (b) [1] (c) HCl < HF < CH₃COOH < HCN [1] H⁺ / H₃O⁺, CH₃COO⁻, CH₃COOH [1] (d) (e) Fluoride, [1] [1] (f) Measure conductivity [1] greater for HCl [1] **OR** Chemical reaction e.g. add magnesium metal to each solution [1] more vigorous reaction with HCl [1] 2. Either: remove one electron (a) [1] gaseous/free atoms [1] Or: $Na(g) \rightarrow Na^{+}(g) + \underline{e}^{-}$ (or e) [2] (Deduct [1 mark] for each underlined term omitted.) (b) Decreases. [1] (c) K [1] Outer electron is furthest from the nucleus/it has the lowest IE/outer electron is least strongly attracted. [1] Greater/higher [1] Second electron is nearer to the nucleus/in a lower energy level, more difficult to remove. [1] 3. Increases. [1] (a) Pressure doubles. (b) [1] Since double the number of collisions [1] on the walls of the container. [1]


SECTION B

4.	(a)	(i)	Mg, Fe, Cu, Ag	[1]
		(ii)	Loss/removal of electrons; Fe/Cu/Mg	[1] [1]
		(iii)	Reduction/decrease in oxidation number; $Cu^{2+}/Ag^{+}/Fe^{2+}$	[1] [1]
		(iv)	Mg	[1]
			It reduces Fe ²⁺ ; Fe reduces Cu ²⁺ ; Cu reduces Ag ⁺ .	[1]
		OR	It reduces Fe ²⁺ to Fe, which can then reduce everything else.	[1]
		OR	It is the most reactive (of the metals shown).	[1]
		(v)	Ag^+	[1]
			Every metal present can reduce it to Ag.	[1]
		(vi)	Does not react	[1]
			It has too low an electrode potential/too low in reactivity series/less reactive than Mg.	[1]
	(b)		Source of current [1] Electrodes [1] Correct polarity with reference to battery [1] Molten salt [1]	
	(c)	elect elect (at th	ne cathode; trons are given to the cations/positive ions; trons are removed from the anions/negative ions; ne anode) per formed (at the cathode);	[1] [1] [1]
			rine formed (at the anode);	[1]
		Sum	mary: electron loss [1] electron gain [1] copper formed [1] chlorine formed [1] related to correct electrode in one case [1] (e.g. Cu at cathode OR Cu ²⁺ gains 2e ⁻ at cathode.)	

5.	(a)	(i)	Enthalpy of products – enthalpy of reactants	[1]
			Specified temperature (e.g. 298 K)	[1]
			Specified pressure (e.g. 1.013×10^5 Pa)	[1]
		(ii)	Take a known volume of sodium hydroxide solution	[1]
			of known molarity/concentration	[1]
			record its temperature	[1]
			and place in an insulated vessel.	[1]
			Add a solution of HCl, of known temperature, such that an equal/excess	
			number of moles is added.	[1]
			Stir/mix,	[1]
			record the maximum rise in temperature.	[1]
			Need: Temperature rise [1].	
			$\Delta H = \text{Total mass (or volume)} \times \text{temperature rise} \times \text{specific heat capacity}$	[1]

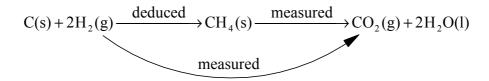
Divide by number of moles (of limiting reactant if excess or of other reactant used) [1] (i.e. factor to convert to 1 mole).

(Any 9 points)

Overall diagram: enthalpy label and two different levels;	[1]
labelled enthalpy levels – NaCl / H ₂ O must be lower;	[1]
enthalpy change shown;	[1]
products more stable than reactants/reaction exothermic.	[1]

Question 5 continued

(b) Hess's Law enables enthalpy changes which cannot be found experimentally to be calculated from other experimental results.

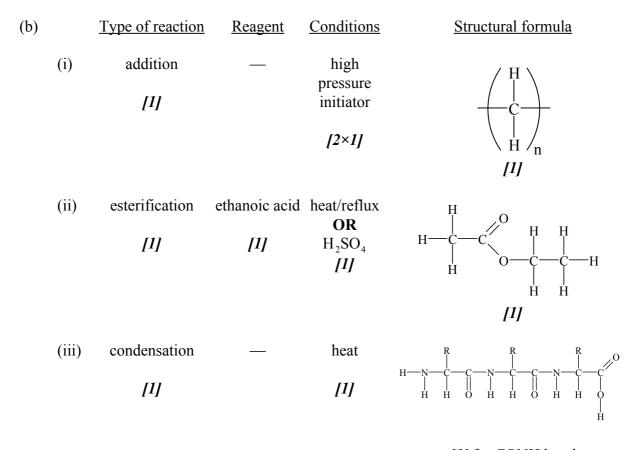

Suitable example;

Intermediate stage shown;

Show which enthalpies can be measured, hence which deduced.

[1]

Example:



(Award 1st mark for overall equation, i.e. example; award 2nd mark for intermediate; award 3rd mark for showing $\Delta H_{\rm f}$ deduced from enthalpies of combustion.)

6.	(a)	Butane has a higher boiling point than ethane since the molecule is	
		larger/heavier/greater $M_{\rm r}$	[1]
		and so has greater intermolecular/Van der Waals' forces.	[1]
		Ethane is non-polar whereas bromoethane is polar	[1]
		and larger/heavier/greater M_r	[1]
		so has greater intermolecular forces/Van der Waals' forces	[1]
		which require more energy to break.	[1]
		Ethanol is more polar than bromoethane	[1]
		and has hydrogen bonding which requires more energy to break.	[1]

Note: "Intermolecular forces," "Van der Waals' forces," "more energy needed" should be credited **once** only for **any** of the 3 pairs.

(N.B. Maximum of 8 marking points taken from the 3 pairs.)

[1] for CONH bond[1] for rest of molecule