MARKSCHEME

May 1999

CHEMISTRY

Standard Level

Paper 3

[3 marks]

[1 mark]

OPTION A - HIGHER ORGANIC CHEMISTRY

A1.	(a)	C ₂ H ₂ CH ₃ Cl accept diagram of CH ₃ Cl if 3-dim CH ₃ ⁺ accept diagrams for C ₂ H ₂ / CH ₃ ⁺ i	planar/trigonal	
		[1 mark] for each shape. [1 mark] for explanation		[4 marks]
	(b)	Acid: C=O bond shorter/C-O lon	nger	[1 mark]
		Ion: C-oxygen bonds are not doub some explanation (e.g. resonance)		[1 mark]
		e.g	·	[1 mark]
A2.	(a)	Correct structural formula of A		[1 mark]

[I mark] if A and B are wrong but OH replaced Br)

Correct structural formula of B

(b)

OH⁻

Step 1: [1 mark]. Accept breaking of C-Br bond to give carbonium ion. Step 2: arrow [1 mark], nucleophile [1 mark].

Accept arrow from any part of the nucleophile (OH⁻).

If S_N2 offered, could score [2 marks] e.g. correct nucleophile(OH⁻) and arrow from Nu to electron deficient carbon.

lower [H⁺]/weakly (partially) ionised/dissociated into [H⁺]

Introduction of C=O increases polarity/weakens O-H bond

CH₃CO₂ more stable than CH₃CH₂O (delocalisation)

[1 mark]

OPTION B - HIGHER PHYSICAL CHEMISTRY

B1. (a) $CH_3CH_2COOH + H_2O \Rightarrow CH_3CH_2COO^- + H_3O^+ \Rightarrow essential$

OR $CH_3CH_2COOH \Rightarrow CH_3CH_2COO^- + H^+$

[1 mark]

(b)
$$K_{\rm a} = \frac{[{\rm CH_3CH_2COO^-}][{\rm H_3O^+}]}{[{\rm CH_3CH_2COOH}]}$$

accept [H] instead of [H3O]

[1 mark]

(c) (i)
$$pK_a = 4.87$$

[1 mark]

(ii)
$$[CH_3CH_2COO^-] = [H_3O^+] = x \text{ OR } K_a = \frac{x^2}{0.05 - x} \sim \frac{x^2}{0.05}$$

[1 mark]

$$x = \sqrt{0.05 \times 1.34 \times 10^{-5}} = 8.19 \times 10^{-4}$$

[1 mark]

$$pH = -\log[H_3O^+] = 3.1 \text{ (accept 3.0)}$$

[1 mark]

correct answer scores [3 marks]

Correct initial pH (*consequential on (c)(ii))

[1 mark]

Curve between initial pH and equivalence point (some 'relatively flat' portion)

[1 mark]

Correct volume of NaOH at equivalence point

[1 mark] [1 mark]

Vertical region must start at pH > 7

[1 mark]

B2. (a)
$$\Delta S^{\circ} = \sum S^{\circ}_{\text{products}} - \sum S^{\circ}_{\text{reactants}}$$
 [I mark] $S^{\circ}CH_{4} = 186 \text{ J K}^{-1} \text{ mol}^{-1} \text{ from data booklet}$ [I mark] $\Delta S^{\circ} = 186 \text{ J K}^{-1} \text{ mol}^{-1} - (5.73 \text{ J K}^{-1} \text{ mol}^{-1} + 2 \times 130.6 \text{ J K}^{-1} \text{ mol}^{-1})$ [I mark] $\Delta S^{\circ} = -80.93 \text{ J K}^{-1} \text{ mol}^{-1}$ [I mark]

award [3 marks] for correct answer only, i.e. no working. ignore absence of units but penalise incorrect units.

* incorrect info taken from Data Booklet could score first and last two marks. However, if 186 appears anywhere in the calculation award [1 mark] for the correct use of the Data Booklet.

(b) Entropy of products is lower than entropy of reactants. /There is one gaseous mol in products and two gaseous mol in reactants, so molecular disorder decreases. (Decrease in entropy – reduction in number of moles of gas.)

N.B. consequential upon (a)

[1 mark]

OPTION C – HUMAN BIOCHEMISTRY

C1.	(a)	Coconut oil The more unsaturated the converse).	ne oil, the bigger the iodine index (or the	[] mark] [] mark]
	(b)	,		[1 mark] [1 mark]
		Iodine Index = $\frac{100.0 \times 253.8}{282.0}$ = 90		[I mark]
	(c)	Olive oil highest degree of unsatura	tion/most unsaturated/highest iodine index	[1 mark] [1 mark]
	(d)	In order to maintain body to Energy source Cell membranes Protect organs Carry fat-soluble vitamins	emperature/prevent skindrying (waterproofing)	[1 mark] [1 mark] [1 mark]
C2.	(a)	Organic micronutrients that for good health / an organ humans cannot synthesise Note: essential part of the the body		
		[For the mark, candidates must indicate any two of the following: the vitamin is organic, is required for good health, and it is not made in adequate quantities in the human body.]		[I mark]
	(b)	[1 mark] for each correct p		
		-	Vitamin A Vitamin B ₁ /B Vitamin B, C, niacin Vitamin C Vitamin D Vitamin E Vitamin E niacin/vitamin B ns not generalities e.g. vitamin C do not accept	
		colds/'flu		[2 marks]
	(c)	consequence of polarity -(s / vitamin A is non-polar / C more polar than A OH groups / explanation of non-polarity passed award [] markl out of 2	[1 mark] [1 mark]

If only one vitamin is discussed, award [1 mark] out of 2.

OPTION D - ENVIRONMENTAL CHEMISTRY

D1.	(a)	Carbon dioxide (dissolving/reacting with water) [1 mark] only No mark for CO_2 alone $CO_2(aq) + H_2O \Rightarrow H_2CO_3(aq) + solution is acidic$	[2 marks]
	OR	$CO_2 + H_2O \Rightarrow H^+(aq) + HCO_3^-(aq) + H^+implies it is acidic$	
	(b)	HNO ₃ H ₂ SO ₄ / H ₂ SO ₃ NO – automobiles (Subsequent reaction of the NO with oxygen to produce NO ₂ and reaction of NO ₂ with water.)	[1 mark] [1 mark] [1 mark]
		SO ₂ – smelters/smelting/ burning coal or oil/volcanoes	
		equation for production of acid	[1 mark]
D2.	(c) (a)	Leaching minerals from the soil Fishless lakes Damaging stone buildings Damaging trees / forests Iron/steel objects rust more quickly any two [1 mark] (accept valid alternatives) $O_2 + hv \rightarrow 2O$ $O + O_2 \rightarrow O_3$	[1 mark]
	each equation scores [1 mark]		[3 marks]
		[1 mark] for hv radiation	
	(b)	increase in incidence of skin cancer / genetic damage to animals / plants / satellite imaging / weather balloon data / ozone hole over Antarctic Any two	[2 marks]
	(c)	Chlorine atoms generated from the CFCs act as catalysts in the decomposition of ozone. One chlorine atom can destroy many molecules of O_3 , as it is regenerated many times / description of catalytic behaviour.	[2 marks]
		In absence of any other credit, mention of CFCs (not aerosols)	[1 mark[

OPTION E – CHEMICAL INDUSTRIES

E1. (a) (i) The electrolysis can be carried out at a much lower temperature/ cryolite lowers melting point of alumina. [1 mark] $2O^{2-}-4e^{-} \rightarrow O_2/\text{half version } O^{2-}-2e^{-} \rightarrow \frac{1}{2}O_2$ [1 mark] Oxygen (produced at the anode) reacts with the carbon electrode/ Carbon (anode) burns in O_2 formed $/C + O_2 \rightarrow CO_2$ [1 mark] (b) Alumina reacts with/dissolves in NaOH/KOH. [1 mark] Basic impurities do not dissolve/alumina acts as an acidic oxide. [1 mark] Aluminium is lighter/less dense than copper (and so the pylons do not have to be as strong). [1 mark] E2. (a) Named hydrocarbon e.g. propane [1 mark] balanced equation (e.g. $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$) N.B. complete [1 mark] combustion (b) Balanced equation showing production of appropriate alkane and alkene $(e.g. C_{10}H_{22} \rightarrow C_8H_{18} + C_2H_4)$ [2 marks] An unbalanced equation showing the formation of an alkane and an alkene [1 mark] (c) Stage 1: Fractional distillation [1 mark] Stage 2: Ethene is produced by cracking less valuable fractions [1 mark] Stage 3: Polymerisation is used to convert ethene into polythene [1 mark] (d) Toxic substances associated with combustion of plastics Problems disposing of non-biodegradeable plastics [2 marks] Build up of (plastic) litter

accept other valid answers

OPTION F - FUELS AND ENERGY

F1. (a) $\frac{1000}{12} = 83.3$ mol carbon

[1 mark]

heat (evolved) = moles×
$$(-\Delta H_c^{\theta})$$

= 83.3× (-393.5)
= 32.8 MJ (32800 KJ) (second mark consequential on above)

[1 mark]

(b)
$$2C(s) + O_2(g) \rightarrow 2CO(g)/S(s) + O_2(g) \rightarrow SO_2(g)$$

not $NO_2(g)$

State symbols **not** required Symbol for sulphur could be S_x (x = 1 to 8)

[1 mark]

- (c) CO ensure efficient/complete combustion/ensuring excess air/O₂
 - SO₂ (scrubbing the gas) by passing through an alkali/absorb in slurry of powdered limestone in water desulphurisation (of the fuel) don't burn it/switch to an alternative fuel

not just scrubbing/limestone

 NO_2 if given in B – (scrubbing the gas) by passing through an alkali not just scrubbing

any one, [1 mark]

[1 mark]

(d) Water/steam

[1 mark]

$$C(s) + H_2O(g) \rightarrow H_2(g) + CO(g)$$

[1 mark]

state symbols not essential

(e) easy to burn/easy to mix with air/controlled rate of combustion easy to transport/(by tanker or pipeline)/easy to handle/can be pumped

[2 marks]

F2. (a) Rearrangement of extranuclear/outer electrons as compared with nuclear processes/emphasis on the change in the nucleus/no new 'elements' or atoms formed (chemical reaction) or converse re nuclear reaction or lower energy change (chemical)/no mass loss (chemical)/no change in the nucleus (chemical)

[1 mark]

N.B. sequence in question chemical-nuclear may be implicit to the answer/assume if statement restricted to chemical, the opposite applies to nuclear

(b) shielding - to prevent escape of nuclear particles/radioactivity

control rods - to control and maintain a safe level of

fission/control number of free neutrons

cooling system - maintain temperature of reactor (core)

moderator – to slow the **neutrons**

[2 marks] each

[6 marks]

In the absence of any role being assigned give 2 marks for three components (1 mark for two components). These are salvage marks only.