MARKSCHEME

May 1999

CHEMISTRY

Standard Level

Paper 2

SECTION A

Students to answer all questions in this Section. Total marks for Section A: 20.

1.	(a)	(i) Incr	[1 mark]			
		incr	easing the pressure shifts equilibrium to the right.	[1 mark]		
		` /	thermic	[1 mark]		
			t have exothermic to score second mark	[1 mark]		
	(b)	Do not aw	erature, high pressure vard credit for specific numerical values	[1 mark]		
	(c)	$K_{\rm c} = \frac{[\rm N]}{[\rm N,]}$	$\left[\frac{H_3}{H_2}\right]^2$ product (as numerator)	[1 mark]		
			for powers	[1 mark]		
	(d)	Decreased	[1 mark]			
		equilibriu	m moves (shifts) to left/less NH ₃ produced	[1 mark]		
	(e)	(i) incr	eased	[1 mark]		
		(ii) uncl	nanged	[1 mark]		
2.	(a)	energy ne	[1 mark]			
		(a mole of				
		in the gas	[1 mark]			
	(b)	-698 (kJ n	value [1 mark]			
		+698 scor	sign [1 mark]			
3.	(a)	Increase in	[1 mark]			
		relative m				
		Intermole	[1 mark] [1 mark]			
		separate molecules/overcome forces.				
	(b)	methanol	[I mark]			
		hydrogen	[1 mark]			
				[Total 20 marks]		

SECTION B

Students to answer only ONE of the questions in the Section. Total mark for each question: 20.

4. (a) mass number: number of protons and neutrons (in the nucleus) [1 mark] atomic number: number of protons/number of electrons in the atom [1 mark]

nucleus [1 mark]

electron distribution must be 2, 4 to score the mark

[1 mark]

(b) ²³₁₁Na 11p, 11e⁻, 12n 2, 8, 1

[1 mark]

³⁹₁₇K⁺ 19p, 18e⁻, 20n 2, 8, 8 [1 mark]
[1 mark]

[1 mark]

³⁵Cl⁻ 17p, 18e⁻, 18n 2, 8, 8

[1 mark]
[1 mark]

Allow s, p notation if correct

,, ,,

(c) Same group: Na, K
Each has le⁻/same number of valence e⁻s in outer orbital

[1 mark] [1 mark]

Same period: Na, Cl same number (3) of orbitals containing electrons

[1 mark] [1 mark]

[1 mark]

(d) ³⁵Cl is the more abundant 35.5 is nearer to 35 (than to 37)/35.5 means 75 % ³⁵Cl

[1 mark]
[1 mark]

(e) (i) The lines become closer together/converge then converge/form a (thick) band/cease

[1 mark]

(ii) electrons/electronic changes change energy (levels)

[1 mark] [1 mark]

[Total 20 marks]

5.

(b)

All valence $\overline{e}s$ should be shown for [3 marks] . Award [1 mark] if only lone pairs shown in NH3 and H20

[3 marks]

[1 mark]

(a) electrons initially arranged tetrahedrally/methane is tetrahedral lone pairs repel more than bonded pairs

NH₃ has 1 lone pair so angle < 109.5 (tetrahedral) (≈107°)

H₂O has 2 lone pairs so angle < NH₃ (≈105°)

[1 mark] [1 mark]

:N:N:: :F:F:

[2 marks]

[1 mark]

all valence es should be shown for [2 marks].

Triple bond is stronger/more difficult to break

[1 mark]

(c) Na, Mg, Al (ignore Si if included) have free/sea of electrons and show metallic properties/holding the ions together Na has 1, Mg 2, Al 3 ('free' electrons)
So strength of bonding increases
Si has a giant covalent/macromolecular structure which is very difficult to break down with so many bonds

[5 marks]

(d) C-Cl is more polar than N-Cl N is more electronegative than C

any five [1 mark] each

[1 mark] [1 mark]

is polar

is non-polar

[1 mark] each

[2 marks]

The NCl₃ molecule is not symmetrical/CCl₄ is symmetrical

[1 mark]

[Total 20 marks]

6. (a) three correctly-balanced equations from:

appropriate metal/acid \rightarrow H₂;

MO and acid;

MOH and acid;

M-carbonate and acid;

one each

[3 marks]

if H-X used, maximum [2 marks]

Accept any reasonable chemical reaction for acid

(b) H⁺ donor (acid) and H⁺ acceptor (base)

[1 mark]

 $NH_3 + H_2O \rightarrow NH_4^+ + OH^-$

(NH₃ accepting proton [1 mark]; balanced correctly [1 mark])

[2 mark]

pH paper will turn blue/pH value of 10-12

[1 mark]

(c)

	acid	conjugate base	base	conjugate acid
(i)	H ₂ SO ₄	HSO ₄	HNO ₃	$H_2NO_3^+$
(ii)_	H_2O	OH-	CH ₃ CH ₂ NH ₂	CH ₃ CH ₂ NH ₃ ⁺

acid/conjugate base and base/conjugate acid

[1 mark] each

[2 marks]

(d) H₂SO₄ is stronger than HNO₃ Some evidence of reasoning e.g. H₂SO₄ gives proton to HNO₃ in equation (i)

[1 mark]

[1 mark]

(e) Strong acid is completely dissociated/ionised, weak acid only partially dissociated/ionised.

[2 marks]

Test solutions of equal concentration/equimolar solutions Strong acid gives lower pH value/higher conductivity

[1 mark] [1 mark]

OR

Weak acid gives higher pH value/lower conductivity

OR

Strong acid gives faster reaction with carbonate/suitable metal

(f) (i) A is stronger acid

Difference of 1 pH unit= 10 fold difference in acidity

Therefore A is 10×10×10=10000 times more acidic

[1 mark] [1 mark]

[1 mark]

award BOTH marks if correct value given

(ii) add a base/alkali, add water/dilute

[1 mark] each

[2 marks]

[Total 20 marks]