CHEMISTRY

Standard Level

Thursday 6 May 1999 (afternoon)

Paper 1 45 minutes

This examination paper consists of 30 questions.

Each question offers 4 suggested answers.

The maximum mark for this paper is 30.

INSTRUCTIONS TO CANDIDATES

Do NOT open this examination paper until instructed to do so.

Answer ALL questions.

For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.

Calculators are NOT permitted for this examination paper.

EXAMINATION MATERIALS

Required:

Optically Mark Read (OMR) answer sheet

Allowed:

A simple translating dictionary for candidates not working in their own language

a)
2
್ಷಡ
<u>:</u> 2
℧
.º
eri
نور
4

	1	- 1				
2 He 4.00	10 Ne 20.18	18 Ar 39.95	36 Kr 83.80	54 Xe 131.30	86 Rn (222)	
	9 F 19.00	17 Cl 35.45	35 Br 79.90	53 I 126.90	85 At (210)	
	8 O 16.00	16 S 32.06	34 Se 78.96	52 Te 127.60	84 Po (210)	
	7 N 14.01	15 P 30.97	33 As 74.92	51 Sb 121.75	83 Bi 208.98	
,	6 C 12.01	14 Si 28.09	32 Ge 72.59	50 Sn 118.69	82 Pb 207.19	
	5 B 10.81	13 A1 26.98	31 Ga 69.72	49 In 114.82	81 T! 204.37	
			30 Zn 65.37	ľ	• •	
			29 Cu 63.55	47 Ag 107.87	79 Au 196.97	
			28 Ni 58.71	46 Pd 106.42	78 Pt 195.09	
			27 Co 58.93	45 Rh 102.91	77 Ir 192.22	109 Mt
			26 Fe 55.85	44 Ru 101.07	76 Os 190.21	108 Hs
			25 Mn 54.94	43 Tc 98.91	75 Re 186.21	107 Bh (262)
Number	Atomic Mass		24 Cr 52.00	42 Mo 95.94	74 W 183.85	106 Sg (263)
Atomic Number	Atomic		23 V 50.94	41 Nb 92.91	73 Ta 180.95	105 Dib (262)
			22 Ti 47.90	40 Zr 91.22	72 Hf 178.49	104 Rf (261)
		_	21 Sc 44.96	39 Y 88.91	57 † La 138.91	89 ‡ Ac (227)
	4 Be 9.01	12 Mg 24.31	20 Ca 40.08	38 Sr 87.62	56 Ba 137.34	88 Ra (226)
1 H 1.01	3 Li 6.94	11 Na 22.99	19 K 39.10	37 Rb 85.47	55 Cs 132.91	87 Fr (223)

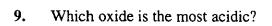
7.1	Lu	174.97		103	Lr	(260)
70	Λp	173.04		102	°Z	(259)
69	Ţm	168.93		101	Md	(258)
89	질	167.26		100	Fm	(257)
19	Ho	164.93		66	Es	(254)
99	ΰ	162.50		86	Ç	(251)
65	Tp	158.92		26	Bk	(247)
64	РS	157.25		96	Cm	(247)
63	Eu	151.96		95	Am	(243)
62	Sm	150.35		94	Pu	(242)
61	Pm	146.92		93	ď	(237)
09	PZ	144.24		92	ם	238.03
59	P.	140.91		91	Pa	231.04
58	ప	140.12		8	Th	232.04
+-			-	++		

- 1. Which sample has the greatest mass?
 - A. $1.0 \text{ mol of } N_2H_4$
 - B. $2.0 \text{ mol of } N_2$
 - C. 3.0 mol of NH₃
 - D. 25.0 mol of H₂
- 2. A compound contains 24 % magnesium, 28 % silicon and 48 % oxygen by mass. What is its empirical formula?
 - A. MgSiO
 - B. Mg₂SiO
 - C. MgSi₂O
 - D. MgSiO₃
- 3. What is the mass in grams of one **molecule** of propanol, C_3H_7OH ? (Avogadro's constant $6.0 \times 10^{23} \text{ mol}^{-1}$)
 - A. 60
 - B. 1.0×10^{-22}
 - C. 1.0×10^{-23}
 - D. 3.6×10^{25}
- 4. Hydrogen sulfide, H₂S, reacts with oxygen to form sulfur dioxide and water as shown below:

$$2H_2S + \underline{O}_2 \rightarrow \underline{SO}_2 + \underline{H}_2O$$

What is the whole number coefficient for oxygen when this equation is balanced?

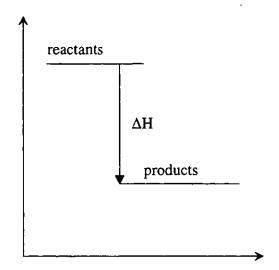
- A. 1
- B. 2
- C. 3
- D. 6


5. Chloroethene, C₂H₃Cl, reacts with oxygen according to the equation below:

$$2 \text{C}_2 \text{H}_3 \text{Cl} + 5 \text{O}_2 \rightarrow 4 \text{CO}_2 + 2 \text{H}_2 \text{O} + 2 \text{HCl}$$

How many moles of CO₂ are produced when 3.0 mol of C₂H₃Cl and 3.0 mol of O₂ are reacted?

- A. 2.4
- B. 3.0
- C. 4.0
- D. 6.0
- 6. All isotopes of tin have the same
 - I. number of protons.
 - II. number of neutrons.
 - III. mass number.
 - A. I only
 - B. Пonly
 - C. III only
 - D. I and III only
- 7. An element with the symbol Z has the electron configuration 2.8.6. Which species is this element most likely to form?
 - A. The ion Z^{2+}
 - B. The ion Z^{6+}
 - C. The compound H_2Z
 - D. The compound Z_6F


8.		ntium is an element in Group 2 of the Periodic Table with atomic number 38. Which of the following ments about strontium is NOT correct?
	A.	Its first ionisation energy is lower than that of calcium.
	B.	It has two electrons in its outermost energy level.
	C.	Its atomic radius is smaller than magnesium.
	D.	It forms a chloride with the formula SrCl ₂ .

- A. Al₂O₃
- B. SiO₂
- C. P₄O₁₀
- D. SO₃
- 10. Which one of the following elements has the lowest first ionisation energy?
 - A. Li
 - B. Na
 - C. Mg
 - D. Al
- 11. Which compound contains ionic bonds?
 - A. Magnesium bromide, MgBr₂
 - B. Dichloromethane, CH₂Cl₂
 - C. Ethanoic acid, CH₃COOH
 - D. Silicon tetrachloride, SiCl₄

- 12. When CH₄, NH₃, H₂O, are arranged in order of increasing bond angle, what is the correct order?
 - A. CH₄, NH₃, H₂O
 - B. NH₃, H₂O, CH₄
 - C. NH₃, CH₄, H₂O
 - D. H₂O, NH₃, CH₄
- 13. Which one of the following bonds is the most polar?
 - A. N-F
 - B. P-F
 - C. S-F
 - D. Cl-F
- 14. In which of the following pairs does the second substance have the lower boiling point?
 - A. F₂, Cl₂
 - B. H_2O , H_2S
 - C. C_2H_6 , C_3H_8
 - D. CH₃OCH₃, CH₃CH₂OH
- 15. The temperature (in K) is doubled for a sample of gas in a flexible container while the pressure on it is doubled. The final volume of the gas compared with the initial volume will be
 - A. the same.
 - B. twice as large.
 - C. four times as large.
 - D. half as large.

16.

What can be deduced about the relative stability of the reactants and products and the sign of ΔH , from the enthalpy level diagram above?

	Relative stability	Sign of ΔH
A.	Products more stable	-
B.	Products more stable	+
C.	Reactants more stable	
D.	Reactants more stable	+

17. The enthalpy changes for two different hydrogenation reactions of C₂H₂ are;

$$C_2H_2 + H_2 \rightarrow C_2H_4$$

$$C_2H_2 + 2H_2 \rightarrow C_2H_6$$

$$\Delta H_1$$

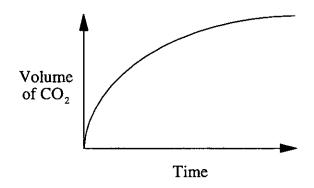
$$\Delta H_2$$

Which expression represents the enthalpy change for the reaction below?

$$C_2H_4 + H_2 \rightarrow C_2H_6 \qquad \Delta H = ?$$

A.
$$\Delta H_1 + \Delta H_2$$

B.
$$\Delta H_1 - \Delta H_2$$


C.
$$\Delta H_2 - \Delta H_1$$

D.
$$-\Delta H_1 - \Delta H_2$$

18. The bond enthalpies for H_2 , Br_2 , and HBr are 436, 193 and 368 kJ mol⁻¹ respectively. Calculate ΔH for the reaction

$$H_2 + Br_2 \rightarrow 2HBr$$

- A. -261
- B. -107
- C. +107
- D. +261
- 19. The reaction between excess calcium carbonate and hydrochloric acid can be followed by measuring the volume of carbon dioxide produced with time. The results of one such reaction are shown below. How does the rate of this reaction change with time and what is the main reason for this change?

- A. The rate increases with time because the calcium carbonate particles get smaller.
- B. The rate increases with time because the acid becomes more dilute.
- C. The rate decreases with time because the calcium carbonate particles get smaller.
- D. The rate decreases with time because the acid becomes more dilute.
- 20. Most reactions occur in a series of steps, one of which is the rate determining step. The rate determining step is so called because it is the
 - A. first step.
 - B. last step.
 - C. fastest step.
 - D. slowest step.

- 21. For a reaction which goes to completion, the equilibrium constant, K_c , is
 - A. >> 1
 - B. << 1
 - C. = 1
 - D. =0
- N₂O₄ and NO₂ produce an equilibrium mixture according to the equation below: 22.

$$N_2O_4(g) \Rightarrow 2NO_2(g)$$
 $\Delta H = 57.2 \text{ kJ mol}^{-1}$

$$\Delta H = 57.2 \text{ kJ mol}^{-1}$$

An increase in the equilibrium concentration of NO₂ can be produced by increasing which of the factors below?

- I. Pressure
- II. Temperature
- A. I only
- B. II only
- C. Both I and II
- D. Neither I nor II
- Four flasks labelled A, B, C and D contain equal volumes of hydrochloric acid of different concentrations. 23. When equal volumes of 1M sodium hydroxide are added to each flask the pH values below are produced.

Flask	Α	В	С	D
pН	1	5	7	13

Which flask contains the most concentrated hydrochloric acid initially?

- Flask A A.
- В. Flask B
- C. Flask C
- D. Flask D

24. In the equilibrium below, which species represent a conjugate acid-base pair?

$$CH_3COOH(aq) + H_2O(l) \Rightarrow CH_3COO^{-}(aq) + H_3O^{+}(aq)$$

- A. CH₃COOH/H₂O
- B. CH₃COO⁻/H₃O⁺
- C. H₂O/CH₃COO⁻
- D. H₂O/H₃O⁺

25. Which one of the following equations represents an oxidation-reduction reaction?

- A. $NH_3 + HCl \rightarrow NH_4Cl$
- B. $SO_3 + H_2O \rightarrow H_2SO_4$
- C. $2Na + Cl_2 \rightarrow 2NaCl$
- D. $HCOOH + CH_3CH_2OH \rightarrow HCOOCH_2CH_3 + H_2O$

26. Zinc metal can supply electrons to copper ions and magnesium metal can supply electrons to zinc ions. Which is the strongest reducing agent?

- A. copper ions
- B. zinc ions
- C. magnesium metal
- D. zinc metal

27. Which of the following pairs represent members of an homologous series?

- A. C_2H_4 and C_2H_6
- B. C_2H_5Cl and $C_2H_4Cl_2$
- C. CH₃OCH₃ and CH₃CH₂OH
- D. C_3H_7COOH and C_4H_9COOH

- 28. How many different isomers have the formula C_4H_{10} ?
 - A. 1
 - B. 2
 - C. 3
 - D. 4
- 29. Polymers formed from monomers with the formula H₂C=CHX
 - A. are produced by substitution reactions.
 - B. have the same percentage of carbon as the monomer.
 - C. contain C=C bonds.
 - D. are more reactive than the monomer.
- 30. Which one of the following compounds is optically active?
 - A. CH₃CH₂CH₂CH₂NH₂
 - B. CH₃CH₂CHCH₃ NH₂
 - C. CH₃CH₂NCH₂CH₃
 - D. CH₃CH₂NCH₃ CH₃