

Markscheme

May 2019

Chemistry

Higher level

Paper 3

34 pages

No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without written permission from the IB.

Additionally, the license tied with this product prohibits commercial use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, is not permitted and is subject to the IB's prior written consent via a license. More information on how to request a license can be obtained from http:// www.ibo.org/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite de l'IB.

De plus, la licence associée à ce produit interdit toute utilisation commerciale de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, n'est pas autorisée et est soumise au consentement écrit préalable de l'IB par l'intermédiaire d'une licence. Pour plus d'informations sur la procédure à suivre pour demander une licence, rendez-vous à l'adresse http://www.ibo.org/fr/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin que medie la autorización escrita del IB.

Además, la licencia vinculada a este producto prohíbe el uso con fines comerciales de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales— no está permitido y estará sujeto al otorgamiento previo de una licencia escrita por parte del IB. En este enlace encontrará más información sobre cómo solicitar una licencia: http://www.ibo.org/es/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Section A

C	Questi	on	Answers	Notes	Total
1.	а		group 18/noble gases ✓	Accept "group 17/halogens".	
			smallest difference between melting and boiling points <i>OR</i> weakest intermolecular forces «in that period» √		2
1.	b	i	density increases «to a maximum in the transition elements» \textit{AND} then decreases \checkmark		1
1.	b	ii	actinoids <i>AND</i> density increases down all groups «due to large increase in atomic mass for small increase in atomic volume» <i>OR</i> actinoids <i>AND</i> «much» greater atomic mass with similar type of bonding <i>OR</i> actinoids <i>AND</i> density «of actinoids» atomic number 90 to 95 is greater than corresponding lanthanoids √	Accept "actinoids AND on graph actinoids have «much» greater density than lanthanoids".	1

(Continued...)

(Question 1b continued)

C	Questi	on	Answers	Notes	Total
1.	b	111	Alternative 1: «metals with» low densities oxidize easier √ «metals with» low melting points oxidize easier √ Alternative 2: in s-block «metals with» high densities oxidize easier OR in s-block «metals with» low melting points oxidize easier √ in d-block «metals with» low densities oxidize easier OR in d-block «metals with» low melting points oxidize easier √	Award [1 max] for "s-block metals more easily oxidized" OR "s-block metals have lower melting points" OR "s-block metals have lower densities". Accept "have greater activity" for "oxidize easier".	2
1.	b	iv	Ionization energy Atomic radius	Accept any negative sloping line. Do not award mark if line touches either axis.	1

Question		ion	Answers	Notes	Total
2.	а	i	100 «s» ✓	Accept 90 to 100 s.	1
2.	а	ii	highest recorded temperature <i>OR</i> when rate of heat production equals rate of heat loss √	Accept "maximum temperature". Accept "completion/end-point of reaction".	1
2.	b	i	Maximum temperature: 73 «°C» ✓ Assumption: «temperature reached if» reaction instantaneous OR «temperature reached if reaction occurred» without heat loss ✓	Accept "rate of heat loss is constant" OR "rate of temperature decrease is constant".	2
2.	b	ii	Any one of: copper(II) sulfate AND mass/amount of zinc is independent variable/being changed OR copper(II) sulfate AND with zinc in excess there is no independent variable «as amount of copper(II) sulfate is fixed» ✓ copper(II) sulfate AND having excess zinc will not yield different results in each trial ✓ zinc AND results can be used to see if amount of zinc affects temperature rise «so this can be allowed for» ✓ zinc AND reduces variables/keeps the amount reacting constant ✓		1 max

(Question 2b continued)

C	Questi	ion		Answers	Notes	Total
2.	b	111	Value $m = 25.00 \text{ g}$ $c = 4.18 J g^{-1} K^{-1}$	Assumption density of solution is 1.000 g cm ⁻³ /same as water OR 25.00 cm ³ solution has a mass of 25.00 g OR mass of zinc/reactant is negligible OR mass of contents was 25.00 g √ specific heat of solution is 4.18 J g ⁻¹ K ⁻¹ /same as water OR zinc/calorimeter/beaker/thermometer absorbs no heat √	Accept "copper(II) sulfate/zinc sulfate" for "solution".	2
2.	b	iv	<i>OR</i> lower/less exotherm 25.00 g <i>OR</i>	nic/less negative AND heat loss/some heat not accounted for nic/less negative AND mass of reaction mixture greater than ermic/more negative AND specific heat of solution less than	Accept "temperature is lower" instead of "heat loss". Accept "similar to theoretical value AND heat losses have been compensated for". Accept "greater/more exothermic/more negative AND linear extrapolation overestimates heat loss".	1

Section B

Option A — Materials

C	Questi	on	Answers	Notes	Total
3.	а		ionic 🗸		1
3.	b	i	red ✓		1
3.	b	ii	emission spectra of both « ⁶ Li and natural Li» give same colour/produce same «range of» wavelengths <i>OR</i> they have same electron transitions/same nuclear charge √	Accept "the spectra are almost identical".	1
3.	b	iii	ICP-MS ✓	Accept "MS/mass spectrometry".	1
3.	С		n «= $\frac{m}{M_r} = \frac{0.694}{6.94}$ » = 0.100 «mol» « $t = \frac{0.100 \text{ mol} \times 96500 \text{ C mol}^{-1}}{2.00 \text{ C s}^{-1}}$ » 4830 «s» √	Accept "4820" OR " 4825 «s»". Award [2] for correct final answer.	2

(continued...)

(Question 3 continued)

C	Question		Answers	Notes	Total
3.	d	i	creation of mirror image/opposing magnetic field of external field «below critical temperature/T of superconductor» OR expulsion of magnetic field from superconductor «below critical temperature/T» √		1
3.	d	ii	 Any three of: positive ions/cations in lattice are attracted to passing electron ✓ lattice is distorted «by this passing electron» ✓ creates «local» regions of increased positive charge ✓ second electron is attracted to deformation <i>AND</i> a coupling occurs ✓ 		3 max
3.	e		mass of Li in unit cell = $(2 \times \frac{6.94 \text{ g mol}^{-1}}{6.02 \times 10^{23} \text{ mol}^{-1}} = 2.31 \times 10^{-23} \text{ g } \checkmark$ volume of unit cell = $(3.51 \times 10^{-8} \text{ cm})^3 = 4.32 \times 10^{-23} \text{ cm}^3 \checkmark$ $(4 \text{ density} = \frac{2.31 \times 10^{-23} \text{ g}}{4.32 \times 10^{-23} \text{ cm}^3} = 0.535 \text{ (g cm}^{-3}) \checkmark$	Award [3] for correct final answer.	3

C	Question	Answers	Notes	Total
4.	а	<i>Any two of:</i> heterogeneous catalyst is in different phase than reactants <i>AND</i> homogeneous catalyst in same phase ✓	Accept "state" for "phase".	
		homogeneous catalysts chemically change/react and reformed at end of reaction <i>OR</i> reactants adsorb onto heterogenous catalyst and products desorb √	Accept "heterogeneous catalyst provides a surface to activate reaction".	2 max
		heterogeneous catalysts are more easily removed than homogenous catalysts \checkmark heterogeneous catalysts can function at higher temperatures \checkmark homogeneous catalysts are «generally» more selective \checkmark homogeneous catalysts offer a broader range of reactions \checkmark		
4.	b	elastomers bend under force «and return to original form when force is released» OR elastomers make tyre more flexible ✓ allows greater contact with road ✓		2
4.	C	does not contain heterocyclic ring with 2 oxygen atoms <i>OR</i> middle ring has only 1 oxygen atom ✓ produces similar toxic effects to dioxins ✓	Accept "does not contain dioxin ring" for M1.	2

(continued...)

(Question 4 continued)

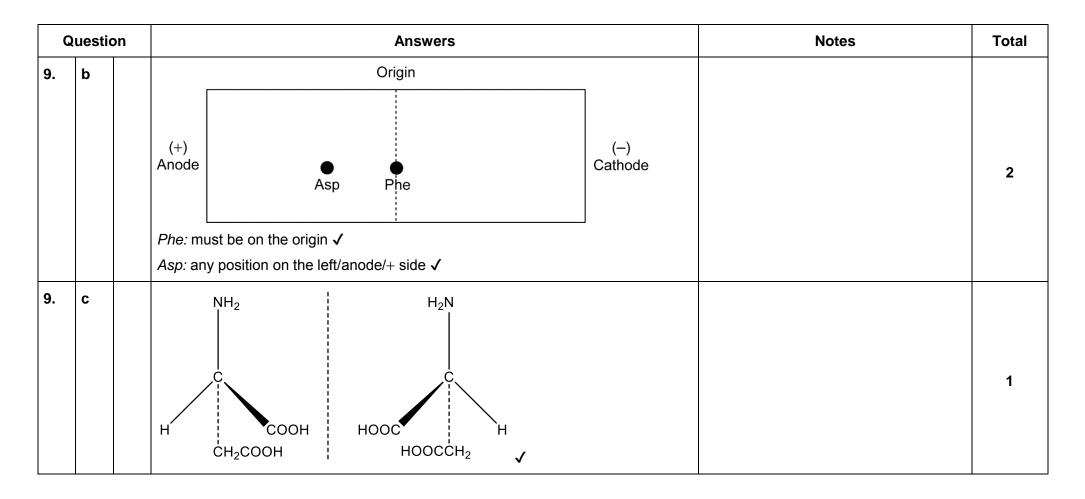
C	Question	Answers	Notes	Total
4.	d	addition AND not two different functional groups reacting OR addition AND formed by breaking one bond of the carbon–carbon double bonds OR addition AND empirical formula of monomer equals empirical formula of polymer OR addition AND mo atoms removed/all atoms accounted for/no loss of water/ammonia/inorganic by-product/small molecules OR addition AND atom economy/efficiency is 100 % OR addition AND there is only one «reaction» product √		1
4.	e	 Any one of: high content of raw materials in product/high atom economy ✓ use of low toxic chemicals/catalysts/materials/solvents ✓ renewable feedstock/raw materials ✓ use of renewable/clean/low carbon energy source ✓ high safety standards ✓ increase energy efficiency ✓ waste recycling ✓ 	Accept other reasonable answers.	1 max

C	Question		Answers	Notes	Total
5.	а				1
5.	b		Low temperature: intermolecular forces prevent molecules moving AND solid/«normal» crystal formation √		2
			<i>High temperature:</i> «above a critical temperature» disrupts alignment of molecules <i>AND</i> behaves as fluid/liquid ✓	Accept "weak intermolecular forces break AND behaves as fluid/liquid".	2

G	Question	Answers	Notes	Total
6.	а	Structure: giant covalent/network covalent ✓	Accept "cylindrical/tube shaped".	
		Bonding: each carbon covalently bonded to 3 other carbons OR each bond has order of 1.5 √	Accept "has delocalized electrons" OR "has sp ² hybridization".	2
6.	b	 Any one of: 3D electrodes ✓ catalysts ✓ biosensors ✓ molecular stents ✓ body armour ✓ synthetic muscles ✓ micro transistors/circuitry/capacitors/electrodes ✓ reinforcing phase in a matrix/composite material «such as concrete» ✓ micro antenna ✓ stealth technology ✓ water/air filtration ✓ solar cells ✓ tennis racquets ✓ microelectronic circuits ✓ 	Do not accept just general answers such as "medicine" or "defence".	1 max

C	Question		Answers	Notes	Total
7.	а		entropy increases «and the reaction proceeds to the right» \checkmark		
			more species / free molecules are formed <i>OR</i>		2
			more ways of distributing energy 🗸		
7.	b		six ✓		1

Option B — Biochemistry

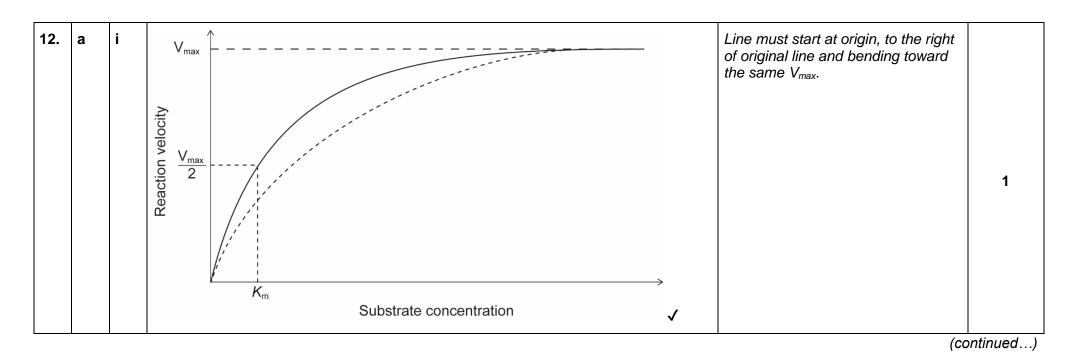

C	Question	Answers	Notes	Total
8.	а	$\int_{H} \frac{\left(\begin{array}{c} H_{2}OH \\ H \end{array} \right)}{\left(\begin{array}{c} H \end{array} \right)} \frac{1}{\left(\begin{array}{c} H \end{array} \right)}$	Square brackets not required. Ignore "n" if given. Mark may be awarded if a polymer is shown but with the repeating unit clearly identified.	2
8.	b	$(C_6H_{10}O_5)_n(s) + nH_2O(l) \rightarrow nC_6H_{12}O_6(aq) \checkmark$	Accept "(n-1)H ₂ O". Do not award mark if "n" not included.	1
8.	C	$q = (mc\Delta T) = 975 \text{ g} \times 4.18 \text{ J} \text{ g}^{-1} \text{ K}^{-1} \times 15.0 \text{ K} = 861 100 \text{ (J} \text{ / } 61.1 \text{ (kJ)} \text{ / } 4$ (heat per gram = $\frac{61.1 \text{ kJ}}{3.49 \text{ g}}$ = 817.5 (kJ g ⁻¹) / 	Award [2] for correct final answer.	2

(continued...)

(Question 8 continued)

Q	Question		Answers	Notes	Total
8.	d		 Any two of: carbohydrate grains swell/break plastic into smaller pieces ✓ inclusion of carbohydrate makes the plastic more hydrophilic/water soluble ✓ carbohydrates are broken down/hydrolysed/digested by bacteria/micro- organisms ✓ plastic becomes more accessible to bacteria as holes/channels are created in it ✓ «presence of» carbohydrate weakens intermolecular/London/dispersion forces between polymer chains in the plastic ✓ 	Accept "starch" for "carbohydrate" throughout. Do not accept "carbohydrates are broken down/hydrolyzed".	2 max

C	Questio	Answers	Notes	Total
9.	а	$HO \qquad \qquad$	Accept "peptide bond/linkage".	2



Question	Answers	Notes	Total
10. a	 coconut oil has higher content of lauric/short-chain «saturated» fatty acids OR cocoa butter has higher content of stearic/palmitic/longer chain «saturated» fatty acids √ longer chain fatty acids have greater surface area/larger electron cloud √ stronger London/dispersion/instantaneous dipole-induced dipole forces «between triglycerides of longer chain saturated fatty acids» √ 	Do not accept arguments that relate to melting points of saturated and unsaturated fats.	3
10. b	$H_{2}C - O - C - (CH_{2})_{10}CH_{3}$ $H_{2}C - O - C - (CH_{2})_{16}CH_{3} + 3H_{2}O$ $H_{2}C - O - C - (CH_{2})_{16}CH_{3} + 3H_{2}O$ $H_{2}C - O - C - (CH_{2})_{16}CH_{3}$ $H - C - OH$ $H - C - O$		2

(Question 10 continued)

Q	uestion	Answers	Notes	Total
10.	C	Any one of: «increased risk of» coronary/heart disease ✓ «increased risk of» stroke ✓ «increased risk of» atherosclerosis ✓ «increased risk of type-2» diabetes ✓ increase in LDL cholesterol ✓		1 max
		decrease in HDL cholesterol ✓ «increased risk of» obesity ✓		

Q	Question		Answers	Notes	Total
11.	а		400–424 «nm» absorption band/violet AND 424–490 «nm» absorption band/blue \checkmark	Accept "400–500 «nm» absorption band" for M1.	
			complementary/opposite colour observed		2
			OR		
			yellow/orange observed ✓		
11.	b		extends energy absorption spectrum «for photosynthesis» \checkmark		1

(Question 12 continued)

Q	Question		Answers	Notes	Total
12.	а	ii	\mathcal{K}_{m} is higher /same V _{max} reached at higher [substrate] \checkmark slower reaction rate OR gives time to excrete/eliminate methanol \checkmark		2
12.	b			Award [2] for correct final answer.	2

Question		Answers	Notes	Total
13.		ascorbic acid: many hydroxyl/OH groups AND retinol: few/one hydroxyl/OH group OR ascorbic acid: many hydroxyl/OH groups AND retinol: long hydrocarbon chain √ ascorbic acid: «many» H-bond with water OR retinol: cannot «sufficiently» H-bond with water √	Do not accept "OH⁻/hydroxide".	2

Q	Question		Answers	Notes	Total
14.	а		organism whose genetic material/DNA has been altered by genetic engineering techniques «involving transferring DNA between species» ✓	Accept "any living organism that possesses a novel combination of genetic material obtained through the use of modern biotechnology".	1
14.	b		Any one of: increased resistance to pests/micro-organisms ✓ increased shelf-life of food ✓ increased nutritional value ✓ greater crop yield ✓ greater tolerance of crops to adverse climatic/soil/growing condition ✓		1 max

Option C — Energy

G	Question		Answers	Notes	Total
15.	а		$ \frac{891 \text{ kJ mol}^{-1}}{16.05 \text{ g mol}^{-1}} = 55.5 \text{ kJ g}^{-1} = 55.5 \text{ s}^{-1} \text{ MJ kg}^{-1} \text{ s}^{-1} \text{ s}^{-$		1
15.	b	i	«55.5 MJ × 58 % =» 32.2 «MJ» ✓		1
15.	b	ii	Reason for higher efficiency: no heat/energy loss in producing steam OR no need to convert chemical energy of the fuel into heat and then heat into mechanical energy OR direct conversion of «gravitational» potential energy to mechanical energy √ Reason for decreased use: limited supply of available hydroelectric sites OR rapid growth of electrical supply in countries with little hydroelectric potential OR not building «new hydroelectric» dams because of environmental concerns √	Accept "less energy lost as heat" but do not accept "no energy lost". Accept "new/alternative/solar/wind power sources «have taken over some of the demand»". Accept "lower output from existing stations due to limited water supplies".	2

Question	Answers	Notes	Total
15. c i	Lefs than 40°C 40°C-200°C 40°C-200°C 40°C-200°C 200°C-300°C 250°C-350°C 300°C-370°C Greater than 370°C Crude oil Furnace Fractionating tower [Source: Image used with kind permission of science-resources.co.uk]		1
15. c ii	gasoline > diesel > lubricating motor oil > asphalt ✓	Accept products written in this order whether separated by >, comma, or nothing.	1

(Question 15 continued)

Q	Question		Answers	Notes	Total
15.	d	i	 methane is tetrahedral OR methane has zero dipole moment/is non-polar/bond polarities cancel ✓ Any two of: IR absorption can result in increased vibrations/bending/stretching ✓ only modes that cause change in dipole absorb IR ✓ for methane this is asymmetric bending/stretching ✓ 		3 max
15.	d	ii	methane is less abundant AND has a greater effect «per mol» √		1

Q	Question		Answers	Notes	Total
16.	а	i	235 U + 1 n \rightarrow 144 Ba + 89 Kr + 3^{1} n \checkmark		1
16.	а	ii	greater binding energy per nucleon in products than reactants \checkmark	Accept "mass of products less than mass of reactants" OR "mass converted to energy/ $E = mc^{2}$ ".	1
16.	а		«Δm = mass of reactants-mass of products» Δm = «234.99346 – 143.89223 – 88.89788 – (2 × 1.00867) =» 0.18601 «amu» \checkmark Δm = «0.18601 amu × 1.66 × 10 ⁻²⁷ kg amu ⁻¹ =» 3.09 × 10 ⁻²⁸ «kg» \checkmark E = «mc ² = 3.09 × 10 ⁻²⁸ kg × (3.00 × 10 ⁸ m s ⁻¹) ² =» 2.78 × 10 ⁻¹¹ «J» \checkmark	Award [3] for correct final answer.	3
16.	b		mass/amount/quantity required so that «on average» each fission/reaction results in a further fission/reaction \checkmark at least one of the «3» neutrons produced must cause another reaction \checkmark	Accept "minimum mass of nuclear fuel needed for the reaction to be self-sustaining".	2
16.	С		$\lambda \left(= \frac{\ln 2}{t_{\frac{1}{2}}} = \frac{\ln 2}{3.15} \right) = 0.220 \text{ wmin}^{-1} \text{ w} \checkmark$ $t \left(= -\frac{1}{\lambda} \ln \frac{N}{N_0} = -\frac{\ln 0.1}{0.220} \right) = 10.5 \text{ wmin} \text{ w} \checkmark$	Award [2] for correct final answer.	2

C	Question		Answers	Notes	Total
17.	а		increased AND fuels can be compressed more «before ignition» ✓	Accept "engines can be designed with higher compression ratio" OR "less chance of pre-ignition/auto- ignition/knocking occurring".	1
17.	b	i	Electrode A: $C_2H_6O(aq) + 3H_2O(l) \rightarrow 12H^+(aq) + 12e^- + 2CO_2(g) \checkmark$ Electrode B: $3O_2(g) + 12H^+(aq) + 12e^- \rightarrow 6H_2O(l) \checkmark$	Accept balanced equations with integer or fractional coefficients. Penalize equilibrium arrows once only.	2
17.	b	ii	Name: PEM/proton-exchange membrane/polymer exchange membrane/polymer electrolyte membrane ✓ <i>Function:</i> allows the passage of protons/H ⁺ ions «from anode to cathode but not electrons or molecules» ✓		2
17.	b	iii	 Any one of: water is a reactant/allows the cell to operate at a higher concentration of protons/H⁺ ions OR water is a stronger electrolyte and thus produces higher electric current ✓ less dangerous/flammable ✓ 		1

(Question 17 continued)

Q	Question		Answers	Notes	Total
17.	с		use of «farm» land «for production»	Ignore any reference to cost.	
			OR		
			deforestation «for crop production for fuel»		1
			OR		
			can release more NOx «than normal fuel on combustion» \checkmark		

Q	uestio	n Answers	Notes	Total
18.	а	 metal conductivity decreases AND semi-conductor conductivity increases √ <i>metal:</i> collisions between «already free moving» electrons/vibrating lattice ions and electrons increase √ <i>semi-conductor:</i> provides sufficient energy for electrons to move to conduction band OR allows semiconductors to ionize forming freely moving electrons √ 		3
18.	b	Any one of: cheaper ✓ uses light of lower energy ✓ plentiful resources ✓ renewable resources ✓ use of nanoparticles provides large surface area exposure to sunlight ✓ can absorb better under cloudy conditions ✓ better conductivity ✓ more flexible ✓		1 max

Option D — Medicinal chemistry

Q	Question		Answers	Notes	Total
19.	а		Name: hydroxyl ✓	Accept "phenol" OR "alcohol" but not "hydroxide".	
			Absorption band:		
			3200–3600 «cm ^{−1} » ✓		2
19.	b	i	х оОН	X and Y must be near the Hs.	
			V CH ₃		2
			correct X ✓		
			correct Y ✓		
19.	b	ii	X: singlet <i>AND</i> Y: singlet ✓		1

Q	Question		Answers	Notes	Total
20.	a		«four-membered» beta-lactam ring ✓	Accept a diagram showing a structural representation of the beta-lactam ring.	1
20.	b	i	produce penicillinase/enzyme that deactivates penicillin \checkmark		1
20.	b	ii	side-chain changed «preserving beta-lactam ring» \checkmark	Accept "R group changed".	1

C	Questio	Answers	Notes	Total
21.	а	$CaCO_{3}(s) + 2HCl(aq) \rightarrow CO_{2}(g) + CaCl_{2}(aq) + H_{2}O(l) \checkmark$	Accept balanced ionic equations involving "H ⁺ " or "H ₃ O ⁺ ". Do not accept "H ₂ CO ₃ ".	1
21.	b	Omeprazole: inhibits enzyme/«gastric» proton pump «which secretes H ⁺ ions into gastric juice» OR inhibits the H ⁺ /K ⁺ -ATPase system ✓ Ranitidine: inhibits/blocks H2/histamine receptors «in cells of stomach lining» OR prevents histamine binding to H2/histamine receptors «and triggering acid secretion» √	Accept "H2-receptor antagonist" for M2.	2

G	Questi	ion	Answers	Notes	Total
22.	a	i	$H_{3}C$	Accept circles that include the alkyl side chain.	1
22.	а	ii	283 ✓		1
22.	b		more soluble «in water» 🗸		1
22.	С		viruses undergo «rapid» mutation ✓ mutation causes a change in viral protein <i>OR</i> drug no longer binds to virus ✓	Accept "rapid reproduction «allows resistant viruses to multiply»".	2

Q	Question		Answers	Notes	Total
23.	а		«temporarily» bond/bind to «opioid» receptors in the brain/CNS \checkmark block the transmission of pain impulses \checkmark		2
23.	b		«codeine crosses blood–brain barrier more easily» morphine has more hydroxyl/OH «groups than codeine» ✓	Award [1 max] if no statement or an incorrect statement about the blood– brain barrier.	
			codeine/ether group is less polar <i>OR</i> hydroxyl/OH «groups in morphine» H-bond to water √		2

Q	uesti	on	Answers	Notes	Total
24.	а	i	<i>Alternative 1</i> half-lives = $\ll \frac{24.0}{6.0} = 4.0 \checkmark$ $\ll N(t) (\%) = 100(0.5)^4 = 8.3 \% \% \checkmark$ <i>Alternative 2</i>	Accept "6.25 «%»".	2
			$\lambda = \left(\frac{\ln 2}{t_{\frac{1}{2}}} = \frac{\ln 2}{6.0} \right) = 0.116 \text{ hour}^{-1} \mathbf{OR} \frac{N_t}{N_0} = e^{-0.116 \times 24} \checkmark$	Award [2] for correct final answer.	
24.	a	ii	99 Tc → 99 Ru + β ⁻ Ru ✓ mass number of Ru <i>AND</i> beta product ✓	Accept "e/e ⁻ / $_{-1}^{0}$ e" for " β -".	2
24.	b	i	small/low amounts of radiation AND for a short time √	Accept "weakly ionizing radiation" instead of "small amounts of radiation". Accept "short half-lives" instead of "for a short time".	1
24.	b	ii	stored in shielded containers until radiation level drops «to a safe level» \checkmark		1
24.	С		lower frequency/longer wavelength/lower energy <i>OR</i> does not use ionizing radiation/radionuclides √	Do not accept "does not cause cancer".	1

Q	uestic	on	Answers	Notes	Total
25.	а		H ₃ C CH ₃ H ₃ C CH ₃ CH ₃		1
25.	b		 «plane-»polarized light passed through sample ✓ analyser/second polarizer determines angle of rotation of plane of plane-polarized light OR each enantiomer rotates plane «of plane-polarized light» in opposite directions «by the same angle» √ 		2