

Markscheme

November 2016

Chemistry

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Section A

Question		ion	Answers	Notes	Total
1.	а	i	HOCl: +1 AND ClO ₂ : +4 ✓	Accept "I" and "IV" but not "1+/1" and "4+/4" notations.	1
1.	а	ii	«most» CT values are higher for «bacterium» B OR «generally» higher dosage needed for «bacterium» B ✓	Accept converse arguments. Accept "concentration" for "dosage".	1
1.	а	iii	«CT = $1.50 \times 10^{-5} \times 10^{3}$ mg dm ⁻³ × 9.82 min =» 1.47×10^{-1} «mg min dm ⁻³ » ✓		1
1.	а	iv	lower than CT value/minimum dosage/1.8 × 10 ⁻¹ «mg min dm ⁻³ » <i>AND</i> no/insufficient treatment ✓	Accept "concentration" for "dosage".	1
1.	b	i	higher CT value at lower temperature OR higher dosage «of chlorine» needed at low temperature ✓	Accept "effectiveness decreases at lower temperature". Accept "concentration" for "dosage". Accept converse arguments.	1
1.	b	ii	labeled axes (y: CT and x: pH) AND curve with increasing gradient ✓	Do not accept axes the wrong way round. Accept a linear graph.	1
1.	b	iii	values at pH 9.0 approximately 3 times values at pH 6.0 <i>OR</i> increase in CT values in same ratio ✓	The exact ratio is 2.9 times. Do not accept just "increase in value".	1
1.	b	iv	[HOCl] decreases AND [OCl⁻] increases ✓		1

(Question 1 continued)

(Question	Answers	Notes	Total
1.	С	plastic disposal/pollution OR plastic bottles use up petroleum/non-renewable raw material OR chemicals in plastic bottles can contaminate water OR «prolonged» storage in plastic bottles can cause contamination of water OR plastic water bottles sometimes reused without proper hygiene considerations ✓	Accept other valid answers. Accept economic considerations such as "greater production costs", "greater transport costs" or "bottled water more expensive than tap water".	1

2.	а	repeat steps 3 and 4 OR repeat step 5 OR conduct a third heating OR «re»heat AND «re»weigh ✓ water still present OR need two consistent readings OR heat to constant mass ✓	Do not accept "cleaning/washing the crucible".	2

(Question 2 continued)

Question	n Answers	Notes	Total
2. b	soot/carbon deposited OR incomplete combustion OR air hole of Bunser burner closed/not fully open ✓	Accept "using a yellow «Bunsen burner» flame" for M1.	2
	«value of x » lower ✓	Only award M2 if M1 correct.	
2. c	all mass loss is due to water loss ✓ all the water «of crystallization» is lost ✓ crucible does not absorb/lose water ✓ crystal/BaCl₂ does not decompose/hydrolyse/oxidize/react with oxygen/air «when heated» ✓	Accept "no loss of crystals/BaCl ₂ occurs", "no impurities in the «weighed hydrated» salt", "reaction goes to completion", "heat was consistent/strong", "crystal/BaCl ₂ does not absorb water during cooling", "balance has been calibrated" or "crucible was clean at the start". Do not accept "heat loss to surroundings" or "no carbon deposited on crucible". Reference to defects in apparatus not accepted. Do not penalize if BaCl ₂ . x H ₂ O is used for BaCl ₂ .	2 max

Section B

Option A — Materials

(Question		Answers	Notes	Total
3.	а		MgO: ionic AND SiC: covalent ✓	Accept "covalent network/network covalent" for "covalent" but not just "network".	1
3.	b		metallic «bonding» ✓		1

4.	а	«0.300A × 9.00 × 10³ s =» 2.70 × 10³ «C» ✓	1
4.	b	«mol e ⁻ = $\frac{2700 \text{C}}{96500 \text{C mol}^{-1}}$ =» 2.80×10^{-2} «mol» ✓	1
4.	С	« 1.07 g / 0.0280 mol =» 38.2 «g» ✓	1
4.	d	« 114.82g / 38.2gmol ⁻¹ e ⁻ =» 3.01/3.00 «mol e ⁻ » ✓	1
4.	е	In ³⁺ /3+ AND In ₂ (SO ₄) ₃ ✓ Do not accept "+3/3".	1

5.	а	pores/cavities/channels/holes/cage-like structures ✓		
		«only» reactants with appropriate/specific size/geometry fit inside/go through/are activated/can react ✓	Accept "molecules/ions" for reactants.	2

(Question 5 continued)

(Questi	ion	Answers	Notes	Total
5.	b	i	iron«0»«penta»carbonyl/Fe(CO) $_5$ «catalyst» decomposes $\begin{tabular}{l} \it{OR} \\ Fe(CO)_5(g) \rightarrow Fe(s) + 5CO(g) \\ \it{OR} \\ metal nanocatalyst/clusters/particles formed «in situ» \label{eq:composes} \end{tabular}$	Accept "cobalt-molybdenum/Co-Mo/CoMo" as a catalyst.	2
			$2CO(g) \rightarrow CO_2(g) + C(s) \checkmark$	Accept "conversion of CO molecules into CNTs/ SWNTs" for M2.	
5.	b	ii	higher efficiency per unit mass/volume of catalyst «due to higher surface to mass/volume ratio» OR greater selectivity «due to metal nanoclusters/surface topology/pore size» OR higher stability of catalyst «due to lower tendency to aggregation» OR reduced cost of catalyst/product/chemicals «as precious metals can be replaced with nanocatalysts made of inexpensive materials» ✓	Accept "high conversion efficiency". Accept specific examples such as use of nanocatalysts in fuel cells/catalytic converters "leading to reduced use of Pt/Rh/Pd». Accept "lower energy consumption / reduced carbon footprint / reduced global warming", "often operate under milder conditions «so less energy consumption involved/promoting principles of green chemistry», "often have long lifetimes «so more economical»" or "have enzyme mimicking activities".	1

	Questi	on	Answers	Notes	Total
6.	а		H CH ₃ C C C C C C C C C C C C C C C C C C	Continuation bonds needed for mark. No penalty if brackets present or "n" appears after the bracket/formula.	1
6.	b		«same mass of product as reactant, thus» 100 «%» ✓	Accept "less than 100%" only if a reason is given (eg, the catalyst is not converted into the product, or other reasonable answer).	1
6.	С	i	due to stability of plastics / strong covalent bonds OR low volatility preventing good mixing with oxygen «gas» OR lack of/insufficient oxygen OR plastics are often parts of devices with non-combustible components «which mechanically prevent the combustion of plastic components» OR PVC already partly oxidized «because some C−H bonds are replaced with C−Cl bonds», so it cannot produce enough heat for complete combustion OR many industrial/household materials contain additives that reduce their flammability/act as flame retardants ✓		1

(Question 6 continued)

C	Questi	ion	Answers	Notes	Total
6.	С	ii	weakly bound to PVC/no covalent bonds to PVC/only London/dispersion/ instantaneous induced dipole-induced dipole forces between DEHP and PVC <i>AND</i> leach/evaporate «from PVC» to atmosphere/food chain <i>OR</i> has low polarity/contains non-polar hydrocarbon chains <i>AND</i> fat-soluble/ deposits in the fatty tissues <i>OR</i> has unusual structural fragments/is a xenobiotic/difficult to metabolise <i>AND</i> stays in the body for a long time ✓		1
6.	d	i	HO−CH ₂ −CH ₂ −CH ₂ −OH AND HOOC−C ₆ H ₄ −COOH ✓	Accept full or condensed structural formulas. Labelling of monomers not required but penalize incorrect labels.	1
6.	d	ii	Name of linkage: ester AND Name of inorganic product: water ✓	Do not accept "esterification". Do not accept formulas.	1

7.	а	Lyotropic LCs	Thermotropic LCs		Do not award any credit if one type only is	
		solutions AN	ID pure substances	✓	described as the question asks how they differ.	
		LC over certain concentration An range	LC over a temperature range «between solid and liquid phases»	✓		2

C	Question		Answers	Notes	Total
8.	а	i	2d sin θ <i>OR</i> 2 AB / 2 BC / AB + BC / AB <i>AND</i> BC ✓	Vertical lines indicating lengths not required. Answer may be conveyed in words also. Do not accept AC – reference must be made to B.	1
8.	а	ii	extra distance travelled/ $ AB + BC = n\lambda/a$ whole number of wavelengths \checkmark	Accept notations of extra distance as in (a)(i).	1
8.	b	i	$\frac{52.00 \mathrm{gmol}^{-1}}{17.28 \times 10^{-23} \mathrm{g} \mathrm{unit} \mathrm{cell}^{-1}}$ =» 3.009 × 10 ²³ «unit cells mol ⁻¹ » ✓		1
8.	b	ii	$\frac{6.02 \times 10^{23} \text{ atoms mol}^{-1}}{3.01 \times 10^{23} \text{ unit cells mol}^{-1}}$ =» 2 «atoms per unit cell» ✓		1

9.	а	creation of a mirror image magnetic critical temperature/ T_c of the superconstant OR expulsion of a magnetic field from a temperature/ T_c » \checkmark	conductor»			1
9.	b	Type 1 superconductors sharp transitions to superconductivity OR lower critical temperatures/T _c AN	Type 2 superconductors ND more gradual transitions to superconductivity ND higher critical temperatures/T _c	✓	Accept "Type 1: «most» metals AND Type 2: alloys/metal oxide ceramics/ perovskites".	1

Question		Answers		Notes	Total
10. a	One similarity: both involve hydroxyl/•OH «radical	s» ✓		Accept "hydroxy" for "hydroxyl".	
	One difference: Fenton reaction mechanism	Haber-Weiss reaction]	Do not penalize missing radical symbols	
		mechanism		if consistent throughout.	
	hydroxyl «radical»/•OH «concentration» dependent mechanism OR	AND hydroxyl «radical»/•OH «concentration» independent mechanism			
	Fe ²⁺ is the catalyst OR	AND Fe ³⁺ is the catalyst			2
	Fe ³⁺ is the intermediate	AND Fe ²⁺ is the intermediate			
		and			
	$ Fe^{3+} + H_2O_2 \rightarrow Fe^{2+} + HOO \cdot + H^+ $	$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + HO^{\bullet} + OH^{-}$			
	OR	4415 H O 40 - \ O 40H 0H -	1	Accept " $H_2O_2 \rightarrow 2$ •OH" for the Fenton mechanism.	
	$\square \square_2 \square_2 \square_2 \rightarrow \square \square^{\bullet} + \square \square \square^{\bullet} + \square_2 \square$	AND $H_2O_2 + \bullet O_2^- \rightarrow O_2 + \bullet OH + OH^-$		moonamon.	

(Question 10 continued)

C	uest	ion	Answers	Notes	Total
10.	b	i	molecules/ions/substances are attracted to/form «non-covalent» interactions with the <u>surface</u> of the adsorbent ✓		1
10.	b	ii	$ \begin{bmatrix} $	Do not penalize missing charge or square brackets. Bonds to Hg must be shown (in any format).	1

Option B — Biochemistry

C	Questi	ion	Answers	Notes	Total
11.	а		Name of the chemical link: ester AND Name of the other product: water ✓	Do not accept formulas. Do not accept "esterification".	1
11.	b	i	coconut oil <i>AND</i> lowest «percentage of» unsaturated fatty acids <i>OR</i> coconut oil <i>AND</i> smallest number of C=C bonds <i>OR</i> coconut oil <i>AND</i> highest «percentage of» saturated fatty acids ✓	Accept "fats" for "fatty acids".	1
11.	b	ii	soybean oil <i>AND</i> highest «percentage of» polyunsaturated fatty acids <i>OR</i> soybean oil <i>AND</i> greatest number of C=C bonds <i>OR</i> soybean oil <i>AND</i> lowest «percentage of» saturated fatty acids ✓	Accept "fats" for "fatty acids".	1
11.	b	iii	Beef fat: «P/S = $\frac{3}{59}$ =» 0.05 AND Soybean oil: «P/S = $\frac{50 + 8}{14}$ =» 4.1 ✓		1
11.	b	iv	«higher proportion of» polyunsaturated fatty acids decrease risk of atherosclerosis/heart disease/cardiovascular disease/CVD <i>OR</i> «higher proportion of» polyunsaturated fatty acids which are less likely to be deposited on the walls of arteries «than saturated fatty acids» ✓	Accept converse arguments. Accept correct arguments in terms of HDL and LDL but not in terms of "good" and "bad" cholesterol. Accept "fats" for "fatty acids".	1

(Question 11 continued)

C	Question		Answers	Notes	Total
11.	b	V	Any two of: cotton seed oil has «a higher proportion of» longer chain/greater molar mass fatty acids ✓ molecules of cotton seed oil have greater surface area/higher electron density ✓	Accept converse arguments. Accept "molecules of cotton seed oil are packed more closely/have more regular	2 max
			stronger London/dispersion/instantaneous induced dipole-induced dipole forces «between chains» in cotton seed oil ✓	structure" for M2.	

12.	а		CO₂ AND H₂O AND sun ✓	Accept names. Accept "sunlight/light/photons" instead of "sun".	1
12.	b	i	both have formula C _x (H ₂ O) _y <i>OR</i> both contain several OH/hydroxyl «groups» <i>AND</i> a C=O/carbonyl «group» ✓	Accept "both have formula $C_nH_{2n}O_n$ /empirical formula CH_2O " but do not accept "both have same molecular formula/have formula $C_3H_6O_3$ ".	1
				Accept "hydroxy" but not "hydroxide/OH-" for "hydroxyl".	
				Accept "aldehyde or ketone" for "carbonyl".	

(Question 12 continued)

Q	Question			Ans	swers	Notes	Total
12.	b	ii	X RCHO/CHO OR C=O/carbonyl «group with C» bonded to H OR formyl «group» OR C=O/carbonyl «group» at end of chain/at C-1 «atom»	AND	Y R ₂ CO/RCOR' OR carbonyl/C=O «group with C» bonded to two C/R «groups» OR C=O/carbonyl «group» in middle of chain/at C-2 «atom»	Accept "alkyl" for "R". Accept "X: aldose/aldehyde AND Y: ketose/ketone". Accept "CO" for "C=O".	1
12.	C	i	CH ₂ OH H OH	- O on	either but not both ends ✔	Brackets are not necessary for the mark. Do not accept β-isomer. Mark may be awarded if a polymer is shown but with the repeating unit clearly identified. 3D representation is not required.	1

(Question 12 continued)

C	uesti	ion	Answers	Notes	Total
12.	С	ii	Advantage: Any one of: biodegradable / break down naturally/by bacteria ✓ compostable ✓ does not contribute to land-fill ✓ renewable/sustainable resource ✓ starch grains swell AND help break up plastic ✓ lower greenhouse gas emissions ✓ uses less fossil fuels than traditional plastics ✓ less energy needed for production ✓ Disadvantage:	Ignore any reference to cost. Do not accept just "decompose easily".	
			Any one of: land use «affects biodiversity/loss of habitats» ✓ growing corn for plastics instead of food ✓ «starch» breakdown can increase acidity of soil/compost ✓ «starch» breakdown can produce methane «especially when buried» ✓ sensitive to moisture/bacteria/acidic foods ✓ «bioplastics sometimes» degrade quickly/before end of use ✓ cannot be reused ✓ poor mechanical strength ✓ eutrophication ✓ increased use of fertilizers/pesticides/phosphorus/nitrogen «has negative environmental effects» ✓	Accept "prone to site explosions/ fires" or "low heat resistance" for disadvantage. Only award [1 max] if the same example is used for the advantage and disadvantage.	2 max

C	uesti	on	Answers Notes	Total
13.	а		2-amino-4-methylpentanoic acid ✓ Accept "4-methyl-2- aminopentanoic acid".	1
13.	b	i	Origin (+) Anode (+) Anode Lys on cathode side AND Asp on anode side ✓ Val at origin AND Thr on anode side but closer to origin than Asp ✓ Val and Thr need not overlap. Accept any (reasonable) size and demarcation of position so long as position relative to origin is correct. Accept crosses for spots. Award [1 max] for any two correct. Award [1 max] if net direction of spots is reversed. Award [1 max] if the four points are in the correct order but not in a straight line.	2
13.	b	ii	different sizes/molar masses/chain lengths «so move with different speeds» ✓	1
13.	С		$ \text{«-COOH} \rightleftharpoons \text{-COO}^- + \text{H}^+ (\text{-COOH} = \text{HA}; \text{-COO}^- = \text{A}^-) \text{»} $ Award [3] for correct final answer. $ \text{pH} = \text{pK}_a + \log \frac{[\text{A}^-]}{[\text{HA}]} / 3.0 = 4.0 + \log \frac{[\text{-COO}^-]}{[\text{-COOH}]} / -1.0 = \log \frac{[\text{-COO}^-]}{[\text{-COOH}]} $ $ \text{10}^{-1} = \frac{[\text{-COO}^-]}{[\text{-COOH}]} $ ≪percentage ionized/-COO ⁻ = $\frac{1}{1+10} \times 100 = \text{»} 9.1 \text{ «%»} \checkmark $	3

C	uesti	ion	Answers	Notes	Total
14.	а	i	$K_{\rm m}$ hexokinase: approx. 1.7 «mmol dm ⁻³ » AND $K_{\rm m}$ glucokinase: approx. 8.5 «mmol dm ⁻³ » \checkmark	Accept answers in the range 1.0-2.0 for hexokinase and 7.0-9.0 for glucokinase.	1
14.	а	ii	glucokinase as it is not saturated «with substrate at normal concentration of blood glucose» OR glucokinase as its saturation increases with increased glucose concentration in the blood ✓	Accept "at the normal levels of blood glucose concentration, relative velocity of glucokinase still dependent on concentration of glucose".	1
14.	b	i	glucose-6-phosphate lowers enzyme activity/acts as enzyme inhibitor ✓		1
14.	b	ii	«inhibitor binds at» allosteric site ✓	Accept "outside/away from active site".	1

15.	а	phosphato/phosphate «group» ✓	Do not accept "phosphoric acid", "phosphorus" or any formula.	1
15.	b	mass spectrometry / X ray diffraction/crystallography / nuclear magnetic resonance «spectroscopy» OR bacteria able to grow in absence of phosphorus OR reproducible data ✓	Accept abbreviations (eg, MS, NMR). Accept "elemental analysis" or "atomic absorption spectroscopy/ AA(S)".	1

16.	а	«extensive» conjugation «of double bonds»/delocalization «of electrons»		
		OR		1
		«many» alternating single/C–C AND double/multiple/C=C bonds ✓		
16.	b	in aqueous solution <i>AND</i> hydroxyl/OH/ionic/oxonium/O⁺ «groups» ✓	Accept "polar/hydroxy" for "hydroxyl".	4
			Do not accept "OH⁻/hydroxide/	•
			oxygen".	

(Question 16 continued)

Q	uestion	Answers	Notes	Total
16.	С	pH 2: «absorption peak 520 nm» red <i>AND</i> pH 11: «absorption peak 620 nm» blue ✓ complementary/opposite colour observed «to wavelength absorbed» <i>OR</i> pH 2: «absorption peak 520 nm» green absorbed <i>AND</i> pH 11: «absorption peak 620 nm» orange absorbed ✓	Award [1 max] if colour absorbed and colour observed are correct for either at pH 2 or pH 11.	2

Option C — Energy

Q	Question		Answers	Notes	Total
17.	а	i	$ \frac{1.58 \times 10^7 \text{ J}}{80.0 \text{ kg}} = \frac{15.8 \text{ MJ}}{80.0 \text{ kg}} = 1.98 \times 10^{-1} $		1
17.	а	ii	gasoline releases more energy from a given mass of fuel <i>OR</i> gasoline has higher specific energy ✓	Do not accept volume in place of mass as question refers to specific energy, not energy density.	1
17.	b	i	$ \frac{15.8 \text{MJ}}{34.3 \text{MJ} \text{dm}^{-3}} = 4.61 \times 10^{-1} \text{wdm}^{3} \text{w} \checkmark $		1
17.	b	ii	«4.61 × 10 ⁻¹ dm³ × 32.0 km dm ⁻³ × 4» = 59.0/59.1 «km» ✓		1

18.	а	«tends to» decrease with longer/larger/heavier alkanes ✓ «tends to» increase with bulkier/more branched alkanes ✓	Accept "octane number decreases with the separation between branches" OR "increases with the more central position of branches".	2
			Accept converse argument.	
18.	b	$C_7H_{16} \rightarrow C_6H_5CH_3 + 4H_2 \checkmark$	Accept "C ₇ H ₈ " for "C ₆ H ₅ CH ₃ ".	1

	Question	Answers	Notes	Total
19.	а	Any two of: $CO_2(g) \stackrel{H_2O(l)}{\rightleftharpoons} CO_2(aq) \checkmark$ $CO_2(aq) + H_2O(l) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$ OR $HCO_3^- \text{ and } H^+ \text{ ions are formed } \text{ wby dissolved } CO_2 \checkmark$ $\text{wincreasing } [CO_2] \text{ shifts equilibrium to right/increases acidity/decreases } \text{pH} \checkmark$	H ₂ O (l) not required over equilibrium sign for M1. State symbols required in the equation in M1. Accept "H ₂ CO ₃ " at either side of the equilibrium in M2. Equilibrium sign required for M1 but not for M2.	2 max
19.	b	bond length/C=O changes OR «asymmetric» stretching «of bonds» OR bond angle/OCO changes ✓ photon re-emitted in random direction OR polarity/dipole «moment» changes OR dipole «moment» created «when molecule absorbs IR» ✓	Accept "bonds/atoms vibrate" for M1. Accept appropriate diagrams.	2

Q	uestion	Answers		Notes	Total
20.		CH ₂ -O-CO-C ₁₇ H ₃₃	CH ₂ -OH		
		$CH-O-CO-C_{17}H_{33} + 3 CH_3-OH \longrightarrow 3 CH_3-O-CO-C_{17}H_{33} + C$	Сн—он 		
		$CH_2-O-CO-C_{17}H_{33}$	I CH2⊤OH		2
		methyl ester formula AND glycerol formula ✓			
		correct balancing ✓		Award M2 only if M1 correct.	

21.	а		Negative electrode (anode): $CH_3COO^-(aq) + 2H_2O(l) \rightarrow 2CO_2(g) + 7H^+(aq) + 8e^- \checkmark$ Positive electrode (cathode): $O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(l) \checkmark$	Accept equilibrium signs in equations. Award [1 max] if correct equations are given at wrong electrodes.	2
21.	b	i	concentration cell has different concentrations of electrolyte «solutions» «but same electrodes and electrolytes» OR standard voltaic cell has different electrodes/electrolytes «but same concentration of electrolytes» ✓	Accept "both half-cells in concentration cell made from same materials".	1
21.	b	ii	«E = 1.10 - $\left(\frac{RT}{nF}\right)$ ln $\frac{\left[Zn^{2+}\right]}{\left[Cu^{2+}\right]}$ = 1.10 - $\left(\frac{8.31 \times 298}{2 \times 96500}\right)$ ln $\frac{10^{-4}}{10^{-1}}$ = 1.10 + 0.0886 =» (+) 1.19 «V» ✓	3 significant figures needed for mark.	1
21.	b	iii	more spontaneous because <i>E</i> > <i>E</i> [⊕] _{cell} ✓		1

(Question 21 continued)

C	Question		Answers	Notes	Total
21.	С	i	photon/«sun»light absorbed by the dye/photosensitizer/«transition» metal complex <i>OR</i> dye/photosensitizer/«transition» metal complex excited by photon/«sun»light ✓ electron«s» move«s» to conduction band <i>OR</i> electron«s» transferred to semiconductor/TiO₂ ✓		2
21.	С	ii	$I_3^- + 2e^- \rightarrow 3I^-$ «at cathode» OR triiodide ions/ I_3^- reduced into/produce iodide ions/ I^- «at cathode» \checkmark iodide ions/ I^- reduce dye/act as reducing agent AND oxidized into/produce triiodide ions/ $I_3^ OR$ $dye^+ + e^- \rightarrow dye$ AND $3I^- \rightarrow I_3^- + 2e^- \checkmark$		2

22.	а	i	product has higher binding energy «per nucleon»/more stable <i>OR</i> nucleons in product more tightly bound «with one another» ✓		2
			lighter elements «than Fe» can fuse/combine with loss of mass/mass defect «and release vast amount of energy» ✓	Accept "mass converted into energy" for M2.	

(Question 22 continued)

C	Questi	ion	Answers	Notes	Total
22.	а	ii	Any one of: deuterium/fuel is abundant/cheap ✓ «helium» products not radioactive ✓ fusion much less dangerous than fission ✓ large amounts/shipments of radioactive fuel not required ✓ far less radioactive waste «created by fast moving neutrons» has to be stored ✓	Accept "reduces greenhouse gas emissions/global warming" OR "no radioactive waste" OR "more reliable power" OR "fewer safety issues". Do not accept "gives out a large amount of energy" as it is in the stem of the question.	1
22.	b	i	$\alpha \lambda = \frac{\ln 2}{t_{\frac{1}{2}}} = \frac{0.693}{25.3 \text{ days}} = 2.74 \times 10^{-2} \text{day}^{-1} \checkmark$	Need correct unit for mark.	1
22.	b	ii	«4 half-lives; $1 \to \frac{1}{2} \to \frac{1}{4} \to \frac{1}{8} \to \frac{1}{16} = \frac{1}{16} / 6.25 \times 10^{-2}$	Accept "6.25%".	
			OR $\frac{N}{N_o} = e^{-\lambda t} = e^{-0.0274 \times 101.2} = 8.25 \times 10^{-2} \checkmark$		1
22.	С	i	octahedral ✓	Accept "square bipyramidal".	1
22.	С	ii	UO₂ strong bonding throughout crystal structure ✓	Accept "UO ₂ has ionic lattice".	
			UF ₆ molecular «covalent bonds between atoms» <i>AND</i> London/dispersion/ instantaneous induced dipole-induced dipole forces between molecules ✓		2

Option D — Medicinal chemistry

C	Question		Answers	Notes	Total
23.	а	i	bond angles smaller/distorted OR instability resulting from abnormal bond angles OR bond angles «approximately» 90° instead of 109.5°/120° ✓	Accept "109/110°" for "109.5°".	1
23.	а	ii	asterisks (*) on all 3 lactam ring carbon atoms ✓	Must mark all 3 carbon atoms. Ignore asterisks on the RHS carbon atoms of the five-membered ring.	1
23.	b	i	beta-lactam/four-membered ring «in clavulanic acid» reacts with enzyme/ beta-lactamase ✓	Accept "acts as enzyme inhibitor/suicide substrate/preferentially binds to enzyme".	1
23.	b	ii	antibiotics not effective against viruses OR viruses have no cell wall/cell structure/target structures to attack ✓ increasing exposure of bacteria «to antibiotic» increases resistance ✓	Accept "antibiotics kill beneficial bacteria" for M2.	2

24.	а	«oral bioavailability is» low OR drug is broken down/pH is too low/unable to be absorbed from gut OR only a small proportion of the drug «taken by mouth» reaches the target organ ✓		1
24.	b	ethoxycarbonyl/carbonyl attached to oxygen ✓	Accept "ester".	1

C	Question	Answers	Notes	Total
25.	а	## ALTERNATIVE 1: ## with eoretical yield = $\frac{1.552\mathrm{g}}{138.13\mathrm{gmol}^{-1}} \times 180.17\mathrm{gmol}^{-1}$ => 2.024 **g> ★ ## wexperimental yield = $\frac{1.124\mathrm{g}}{2.024\mathrm{g}} \times 100$ => 55.53 **w> ★ ## ALTERNATIVE 2: ## with equation is a series of the entire of the	Accept answers in the range 55.4% to 55.7%. Award [2] for correct final answer.	2
25.	b	low temperature gives greater difference between solubility of aspirin and impurities OR «product» crystallizes out from cold solution/«ice-cold water/lower temperature» speeds up crystallization process OR aspirin/product has low solubility «in water» at low temperatures ✓		1
25.	С	recrystallized melting point is higher <i>OR</i> recrystallized melting point is closer to pure substance/literature value ✓ smaller range of values ✓		2

C	Question	tion Answers	Notes	Total 1
26.	а	«ranitidine» blocks/inhibits histamine binding to «H2» receptor <i>OR</i> ranitidine binds to same «H2» receptors «as histamine» <i>OR</i> competes with histamine for binding ✓		
26.	b	proton pump <i>OR</i> H⁺/K⁺ ATPase enzyme ✓	Accept "«secretary surface of» parietal cells". Do not accept "stomach/stomach wall".	1
26.	С	Any two of: chiral molecule/auxiliary/optically active species is used/added/connected «to the starting molecule to force reaction to follow a certain path» ✓ chiral intermediate forms «only» one enantiomer OR auxiliary creates stereochemical condition «necessary to follow a certain pathway» / stereochemical induction OR existing chiral centre affects configuration of new chiral centres ✓ «after new chiral centre created» chiral auxiliary removed «to obtain desired product» ✓		2 max

Q	uestion	Answers	Notes	Total
27.	a	Similarity: both contain «at least one» benzene/aromatic ring OR both contain amino «group» ✓ Difference: diamorphine has one benzene/aromatic ring AND methadone has two phenyl «groups» OR diamorphine has one vinylene/ethenylene/1,2-ethenediyl «group» AND methadone has no vinylene/ethenylene/1,2-ethenediyl «group» OR diamorphine has one ether «group» AND methadone has no ether «group» OR diamorphine has «two» ethanoate/acetate «groups» AND methadone has no ethanoate/acetate «group» ✓	Accept "both contain carbonyl «groups»". Accept "amine" for "amino «group»". Accept "phenyl" for "benzene ring" in M1 and M2 although there are no phenyl groups in diamorphine, as the benzene ring in this compound is a part of a polycyclic structure. Do not accept "arene" or "benzene" alone in M1 and M2. Accept "alkenyl/alkene" for "vinylene/ ethenylene/1,2-ethenediyl" and "ester" for "ethanoate/acetate". Accept "methadone has a ketone/carbonyl AND diamorphine does not/has an ester/ ethanoate/acetate". Accept "diamorphine is a heterocycle/ heterocyclic compound AND methadone is not a heterocycle/heterocyclic compound".	2
27.	b	feeling depressed/anxious/irritable OR craving for opioids/heroin OR experience fever/cold sweats/nausea/vomiting/insomnia/muscle pain/cramps/ diarrhea/increased rate of respiration/increased heartbeat/lacrimation ✓	Accept listed symptoms (eg, depression, anxiety, fever etc.). Some of the most common symptoms are listed here – there may be other valid ones. Accept "headaches".	1

Question		tion	on Answers	Notes	Total
28.	а	i	$^{98}_{42}\text{Mo} + ^{1}_{0}\text{n} \rightarrow ^{99}_{42}\text{Mo}\checkmark$	$Accept ^{98}Mo + {}^{1}n/n \rightarrow {}^{99}Mo.$	1
28.	а	ii	$^{99}_{42}Mo \rightarrow ^{99m}_{43}Tc + ^{0}_{-1}\beta \checkmark$	Accept " $_{-1}^{0}$ e" for " $_{-1}^{0}$ β". Accept " $_{-1}^{99}$ Mo \rightarrow $_{-1}^{99m}$ Tc + β ". Accept " $_{-1}^{0}$ e/e $^{-1}$ /e" for " β ". Do not penalize " $_{-1}^{99}$ Tc" for " $_{-1}^{99m}$ Tc".	1
28.	b		molybdenum-99 can be easily transported «before it decays»/more stable <i>OR</i> «most of» technetium-99m will decay during transportation ✓	Do not accept just "short half-life of Tc- 99m".	1
28.	С		emits gamma rays OR emissions escape from body OR emissions detected by gamma camera OR radiation dose is low ✓ chemically reactive/versatile/transition metal bonds to a range of «biologically active» substances ✓	Do not accept "short half-life of Tc-99m". Accept "energy of photons produced is "relatively" low" and "no high energy beta emission" for M1. Accept " has ability to form tracers" for "bonds to a range of "biologically active" substances".	2
28.	d		low-level «radioactive» waste/LLW OR small amounts of ionizing radiation for short time ✓		1

Question		on	Answers	Notes	Total
29.	а		improvements in technology/instrumentation/analytical techniques/precision of measurements ✓	Accept "greater awareness/knowledge of the negative effects of the drugs".	1
29.	b	i	«components have» different affinities for/partition between 2 phases/mobile and stationary phase ✓		
			move at different rates through instrument OR have different retention times ✓		2
29.	b	ii	nandrolone $M = 274 \text{ «g mol}^{-1}$ » OR testosterone $M = 288 \text{ «g mol}^{-1}$ » ✓	Accept non-integer molar masses, ie, 274.44 «g mol ⁻¹ » and 288.47 «g mol ⁻¹ ».	2
			nandrolone identified because «molecular ion peak of» <i>m</i> / <i>z</i> = 274 ✓	Accept also "m/z = 275" for "m/z = 274" in M2. Accept "absence of peak with m/z = 288".	2