

CHEMISTRY HIGHER LEVEL PAPER 3	Name
Wednesday 17 May 2000 (morning)	Number
1 hour 15 minutes	

INSTRUCTIONS TO CANDIDATES

- Write your candidate name and number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answer all of the questions from two of the Options in the spaces provided. You may continue your answers in a continuation answer booklet, and indicate the number of booklets used in the box below. Write your name and candidate number on the front cover of the continuation answer booklets, and attach them to this question paper using the tag provided.
- At the end of the examination, indicate the letters of the Options answered in the boxes below.

OPTIONS ANSWERED	EXAMINER	TEAM LEADER	IBCA
	/25	/25	/25
	/25	/25	/25
NUMBER OF CONTINUATION BOOKLETS USED	 TOTAL /50	TOTAL /50	TOTAL /50

220-205 20 pages

Option C – Human Biochemist	O	ption	tion C –	Human	Bioch	emisti	'V
------------------------------------	---	-------	----------	-------	--------------	--------	----

C1.	(a)	(i)	Draw the straight-chain formula of glucose and circle a carbon atom in the structure which is not chiral.	[2]
		(ii)	Describe the structural difference between α -glucose and β -glucose.	[2]
	(b)	Give	e the names of the monosaccharides which condense to form	
		(i)	sucrose;	[2]
		(ii)	starch.	[1]
	(c)	State	e one major function of a polysaccharide in the body.	[1]

[3]

C2.	(a)	How many different tripeptides can be formed using three α -amino acids, glycine, alanine and valine, if each amino acid is used only once in each tripeptide?			
	(b)	(i)	Name two methods by which an unknown tripeptide can be analysed.	[2]	
		(ii)	For one of these methods outline the experimental procedure and give the information which would be needed to identify the individual amino acids.	[4]	
	(c)	Alar	nine, $H_2N - CH(CH_3) - COOH$, has an isoelectric point of 6.0. Write the structural		

formulas of alanine at pH values 4.5, 6.0 and 7.5.

-3-

C 3.	Desc	cribe and explain the way in which the activity of an enzyme is influenced by an increase in	
	(a)	substrate concentration;	[3]
	(b)	temperature.	[4]
	Labe	elled graphs, instead of descriptions, may be used to support your answer.	
	(a)		
	(b)		

${\bf Option}\ {\bf D-Environmental}\ {\bf Chemistry}$

D1.	(a)	emis	For each of the air pollutants listed below, state its source and one process in which its emission into the atmosphere could be reduced. State the product(s) formed from the pollutant in one of the processes.			
		(i)	Carbon monoxide:			
		(ii)	Sulphur dioxide:			
		(iii)	Nitrogen oxides:			
	(b)		tify one gas, from the above list, which contributes to acid rain and write an equation for eaction with water.	[2]		

D2.	(a)	Explain what is meant by <i>Biological Oxygen Demand</i> (BOD) and describe the effect of a high BOD in water.	[2]
	(b)	Identify the stage of sewage treatment which removes the substances responsible for BOD and explain how this is done.	[3]
	(c)	Discuss how the addition of nitrates or phosphates to water can contribute to the BOD.	[2]

D3.	(a)	(i)	Explain the meaning of the term LD_{50} .	[2]
		(ii)	State one advantage and one disadvantage of the use of LD_{50} .	[2]
	(b)	these	d and nitrates represent a health hazard in polluted water. Identify a source of each of e pollutants, state a health hazard caused by each pollutant, and indicate a way by which concentration of each can be reduced.	[6]

$Option\ E-Chemical\ Industries$

E1.	(a)	Complete the table below to show the conditions used in the Haber and Contact processes,	
		for the manufacture of ammonia and sulphur trioxide, respectively.	[4

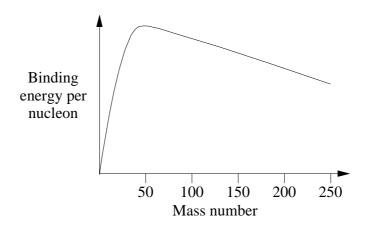
	HABER	CONTACT
Temperature /° C		
Pressure / atm		
Identity of catalyst		

(b)	Write a balanced equation for the manufacture of ammonia (ΔH is negative). Explain the choice of the temperature used.	[4]
(c)	The hydrogen used in the manufacture of ammonia can be obtained by the process of <i>reforming</i> . Give the raw material(s), the conditions and a possible equation for the process.	[3]

E2.	(a)	List two important factors which should be considered when choosing a location for the manufacture of polythene.	[2]
	(b)	Explain why polyvinyl chloride is less flexible than polythene.	[2]
	(c)	Write an equation for the combustion of polythene and polyvinyl chloride and explain why these polymers are first separated before combustion.	[3]

(This question continues on the following page)

(Question E2 continued)


(d)	Discuss and compare the radical mechanism for the manufacture of low density polythene with the ionic mechanism for the manufacture of high density polythene.	[7]

$Option \ F-Fuels \ and \ Energy$

F1.	(a)	Radi	Radium-223, 223 Ra, emits α -particles when it decays.				
		(i)	Write the mass number and atomic number of the heavier product formed by this decay.	[2]			
			Mass number:				
			Atomic number:				
		(ii)	What happens to the mass number and the atomic number of an element if it undergoes β -decay?	[2]			
	(b)		intensity of radiation emitted by a certain mass of 223 Ra falls to $\frac{1}{8}$ of its original value 35.1 days.				
		(i)	Define half-life.	[1]			
		(ii)	Calculate, showing your working, the half-life of ²²³ Ra.	[2]			
		(iii)	Calculate the fraction of ²²³ Ra which has decayed after 35.1 days.	[1]			
		(iv)	Calculate the fraction of ²²³ Ra remaining at this time if the original mass had been				
		(11)	twice as great.	[1]			

F2.	(a)	Identify the two electrodes in the Leclanché dry cell.	[2]
	(b)	Describe the difference between <i>voltage</i> and <i>power</i> for such a cell and identify the factors that affect the voltage and the power.	[4]

F3. (a)

Define the term <i>nuclear binding energy</i> . By using the above curve, explain why 223 Ra undergoes the loss of an α -particle as stated in F1. (a).	[3]
between these types with regard to their sources, characteristics and appropriate methods of	
storage.	[7]
	[7]
	[7]
	[7]
	[7]
	[7]
	[7]
	[7]
	[7]

Option G – Modern Analytical Chemistr	Option G -	Modern	Analytical	Chemisti
---------------------------------------	------------	--------	-------------------	----------

G1.	(a)		w a simple diagram of a mass spectrometer. State briefly how its use could show the tence of isotopes in a gaseous sample of an element.	[6]
		• • •	•••••••••••••••••	
	(b)		orine exists as a mixture of two stable isotopes ³⁵ Cl and ³⁷ Cl, present in the approximate 3:1.	
		(i)	Calculate the relative atomic mass of chlorine.	[2]
		(ii)	Sketch and label a diagram of the mass spectrum of molecular chlorine.	[3]

G2.	(a)	In th	e use of paper chromatography, a retention factor, \mathbf{R}_f , is determined. Define \mathbf{R}_f .	[1]
	(b)	is su solve	op of green dye is placed 2 cm from the bottom of a strip of filter paper. The filter paper spended in a graduated cylinder with 1 cm of the paper immersed in a water–alcohol ent. After 30 minutes, the green spot is no longer present and there is a yellow spot and the spot.	
		(i)	Describe how the \mathbf{R}_f value of the blue spot could be determined.	[2]
		(ii)	Account for the difference in the \mathbf{R}_f values of the yellow and blue dyes.	[2]
		(iii)	What is the significance of an R_f value of 1.0?	[2]

G3.	(a)	A compound of nitrogen has a molecular formula NH ₃ O which could have two structures, ONH ₃ and HONH ₂ . Draw the Lewis structure of each species.	[2]
	(b)	State and explain the number and relative areas of the peaks in the $^1\mathrm{H}$ NMR spectra of $\mathrm{ONH_3}$ and $\mathrm{HONH_2}$.	[5]

Option H – Further Organic Chemistry

Below is a reaction scheme involving compounds A, B and C (referred to in question H1 below):

H1. (a) Name and outline the mechanism for the conversion of **A** into **B**. [4]

(b)	As well as compound B , another product is formed. Write down the structural formula of this compound, and explain why it is only produced in small amounts.	[3]

(This question continues on the following page)

(Question H1 continued)

(c)	The conversion of B into C is a <i>nucleophilic substitution</i> reaction. Define what is meant by nucleophilic substitution.	[1]
(d)	Outline the mechanism involved in this nucleophilic substitution, showing clearly the reacting species.	[3]

H2. The two compounds **V** and **W**, shown below, are known as Freons or CFCs. These compounds are usually inert but are quite reactive in the upper atmosphere contributing to ozone depletion. This depletion reaction follows a free-radical mechanism involving a chlorine free radical Cl-, generated from the CFCs.

(a)	Write	e down the systematic name of each compound.	[2]
	V: W:		
(b)	State	briefly the importance of ozone in the atmosphere.	[1]
(c)	With	reference to Table 10 of the Data Booklet;	
	(i)	explain why CFCs are generally inert compounds.	[1]
	(ii)	account for the fact that a chlorine radical Cl-, rather than a fluorine radical F-, is produced from compounds ${\bf V}$ and ${\bf W}$.	[2]
(d)	Write	e an equation for the reaction between Cl and ozone, O_3 .	[1]

Н3.	(a)	State the structural feature of a molecule needed for optical activity to occur, illustrating your answer with appropriate drawings.	
	(b)	One way of studying optically active compounds is using plane-polarised light. State what is meant by <i>plane-polarised light</i> and how it is affected by optically active compounds. Under what conditions would this effect not be observed?	[4]