

| BIOLOGY<br>HIGHER LEVEL<br>PAPER 2 |  | Na  | me   |  |  |
|------------------------------------|--|-----|------|--|--|
| Monday 5 November 2001 (afternoon) |  | Nun | nber |  |  |
| 2 hours 15 minutes                 |  |     |      |  |  |

## INSTRUCTIONS TO CANDIDATES

- Write your candidate name and number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Section A: Answer all of Section A in the spaces provided.
- Section B: Answer two questions from Section B. Write your answers in a continuation answer booklet, and indicate the number of booklets used in the box below. Write your name and candidate number on the front cover of the continuation answer booklets, and attach them to this question paper using the tag provided.
- At the end of the examination, indicate the numbers of the Section B questions answered in the boxes below.

| QUESTIONS ANSWERED                      |     | EXAMINER  | TEAM LEADER | IBCA      |
|-----------------------------------------|-----|-----------|-------------|-----------|
| SECTION A                               | ALL | /32       | /32         | /32       |
| SECTION B                               |     |           |             |           |
| QUESTION                                |     | /20       | /20         | /20       |
| QUESTION                                |     | /20       | /20         | /20       |
| NUMBER OF CONTINUATION<br>BOOKLETS USED |     | TOTAL /72 | TOTAL /72   | TOTAL /72 |

881-135 8 pages

## **SECTION A**

Candidates must answer all questions in the spaces provided.

1. Energy released in cell respiration can be used for the muscle contractions that cause movement. The amount of energy used per second (J s<sup>-1</sup>) is the power needed for movement. The graph below shows the power used by two birds for flying. The pheasant (*Phasianus colchicus*) has a mass of 1.66 kg and the mallard duck (*Anas platyrhynchos*) a mass of 1.105 kg.

The most efficient flying velocity for each bird, defined as the minimum number of Joules used per metre travelled, is indicated by V on the graph.



(Source: J M V Rayner (1979) J. Exp. Biol. 80 pages 17-54)

| (a) | Compare the data for the two birds shown in the graph.                             | [3]   |
|-----|------------------------------------------------------------------------------------|-------|
|     |                                                                                    |       |
|     |                                                                                    |       |
|     |                                                                                    |       |
|     |                                                                                    |       |
| (b) | Suggest <b>one</b> reason for the difference between the data for these two birds. | [1]   |
|     |                                                                                    |       |
|     | (This question continues on the following p                                        | page) |

(Question 1 continued)

| (c) | Select <b>one</b> of the species and analyse the data in the graph to show that at velocity $V$ the efficiency is greater than at the velocity that requires the least power. Show your working. |  |  |  |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|     |                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|     |                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|     |                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |

In one research project, pigeons (*Columba livia*) were trained to take off, fly 35 metres and land on a perch. During the flight the activity of two muscles, the sternobrachialis (**SB**) and the thoracobrachialis (**TB**), was monitored using an electromyograph. The trace is shown below. The spikes show electrical activity in contracting muscles.

Contraction of the sternobrachialis causes a downward movement of the wing.



(Source: K P Dial et al (1988) J. Exp. Biol. 134 pages 1-16)

| (d) | Deduce the number of down-strokes of the wing during the whole flight.                     | [1] |
|-----|--------------------------------------------------------------------------------------------|-----|
|     |                                                                                            |     |
| (e) | Compare the activity of the sternobrachialis muscle during the three phases of the flight. | [3] |
|     |                                                                                            |     |
|     |                                                                                            |     |
|     |                                                                                            |     |
|     |                                                                                            |     |

(This question continues on the following page)

881-135 **Turn over** 

## (Question 1 continued)

| (f)  | Deduce from the data in the electromyograph how the thoracobrachialis is used.                               | [1] |
|------|--------------------------------------------------------------------------------------------------------------|-----|
|      |                                                                                                              |     |
|      |                                                                                                              |     |
| Anot | her muscle, the supracoracoideus, is antagonistic to the sternobrachialis.                                   |     |
| (g)  | State the movement produced by a contraction of this muscle.                                                 | [1] |
|      |                                                                                                              |     |
| (h)  | Predict the pattern of the electromyograph trace for the supracoracoideus muscle during the 35 metre flight. | [2] |
|      |                                                                                                              |     |
|      |                                                                                                              |     |

**2.** The histogram below shows one year's growth of 150 specimens of an alga, *Ascophyllum nodosum*, found on rocky sea shores.



| (a)      | Identify the category which is the mode.                                                      | [1] |
|----------|-----------------------------------------------------------------------------------------------|-----|
|          |                                                                                               |     |
| (b)      | Outline how the median value of the sample can be found.                                      | [1] |
|          |                                                                                               |     |
|          |                                                                                               |     |
| The mean | shaded area in the histogram shows the range of one standard deviation above and below the n. |     |
| (c)      | State the percentage of the values covered by the shaded area.                                | [1] |
|          |                                                                                               |     |
| (d)      | Outline <b>two</b> uses of the standard deviation.                                            | [2] |
|          |                                                                                               |     |
|          |                                                                                               |     |

(This question continues on the following page)

881-135 Turn over

| ( | Question | 2 | continued | , |
|---|----------|---|-----------|---|
|   |          |   |           |   |

| (e) | The data in the histogram is an example of continuous variation. State <b>two</b> examples of a human characteristic that shows continuous variation. | [2] |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | 1                                                                                                                                                     |     |
|     | 2                                                                                                                                                     |     |
| (f) | Some examples of continuous variation are inherited. Explain the pattern of inheritance that can cause continuous variation.                          | [2] |
|     |                                                                                                                                                       |     |
|     |                                                                                                                                                       |     |

|      |               |                                                                    | Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I             |                                         |              | 5             | Species II    |                |                |
|------|---------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------|--------------|---------------|---------------|----------------|----------------|
|      | UC<br>cine    | AGC serine                                                         | GGC<br>glycine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AGU<br>serine | ACA threonine                           | CCA proline  | GUC<br>valine | GCG alanine   | UUC<br>leucine | GGC<br>glycine |
| (a)  | Usir          | ng these s                                                         | sequences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , explain     | the evidence                            | that indicat | es that th    | e genetic     | code is ur     | niversal.      |
|      |               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                         |              |               |               |                |                |
|      |               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                         |              |               |               |                |                |
|      |               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                         |              |               |               |                |                |
|      |               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                         |              |               |               |                |                |
| (b)  |               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | ce of a gene<br>the base seq            |              |               |               |                |                |
|      |               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                         |              |               |               |                |                |
|      |               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                         |              |               |               |                |                |
|      |               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                         |              |               |               |                |                |
|      |               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                         |              |               | • • • • • • • |                |                |
| (c)  |               | uce the I<br>pecies <b>I</b> .                                     | ONA base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sequenc       | e that is com                           | plementary   | to the me     | ssenger R     | RNA base       | sequence       |
|      |               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                         |              |               |               |                |                |
|      |               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | • • • • • • • • • • • • • • • • • • • • |              |               |               |                |                |
| (d)  |               | re is an senger R                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | which ca      | n synthesise                            | DNA with     | a base        | sequence      | complem        | nentary to     |
| (d)  |               | senger R                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | •                                       | DNA with     | a base        | sequence      | complem        | nentary to     |
| (d)  | mes           | senger R                                                           | NA. he name of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | f this enz    | •                                       |              |               |               |                |                |
| (d)  | mes           | State th                                                           | NA. he name of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | f this enz    | zyme.                                   |              |               |               |                |                |
| (d)  | mes<br>(i)    | State th                                                           | NA.  the name of t | f this enz    | zyme.                                   | <br>ne.      |               |               |                |                |
| In e | mess (i) (ii) | State the State was state was state was state was state was state. | NA.  the name of t | f this enz    | syme.  se this enzyn  the DNA syn       | ne.          |               |               |                |                |

881-135 Turn over

## **SECTION B**

Answer **two** questions. Up to two additional marks are available for the construction of your answers. Write your answers in a continuation answer booklet. Write your name and candidate number on the front cover of the continuation answer booklets, and attach them to this question paper using the tag provided.

| 4. | (a) | Describe the structure of proteins.                                                                                  | [9] |
|----|-----|----------------------------------------------------------------------------------------------------------------------|-----|
|    | (b) | Discuss the solubility of proteins in water.                                                                         | [4] |
|    | (c) | Explain the relationship between genes and polypeptides.                                                             | [5] |
|    |     |                                                                                                                      |     |
| 5. | (a) | Explain the role of water in photosynthesis.                                                                         | [4] |
|    | (b) | Discuss the relationship between the different nitrogenous waste products and the habitats of birds and amphibians.  | [5] |
|    | (c) | Describe the ways in which water is important to animals.                                                            | [9] |
|    |     |                                                                                                                      |     |
| 6. | (a) | Describe the behaviour of chromosomes in the phases of meiosis.                                                      | [9] |
|    | (b) | Explain oogenesis.                                                                                                   | [5] |
|    | (c) | Discuss how, in humans, a larger number of sperms are produced than eggs.                                            | [4] |
|    |     |                                                                                                                      |     |
| 7. | (a) | Outline the structural features which characterise bryophytes, filicinophytes, coniferophytes and angiospermophytes. | [9] |
|    | (b) | Explain the conditions needed for seed germination.                                                                  | [6] |
|    | (c) | Discuss which wild plants need to be conserved as a priority.                                                        | [3] |
|    |     |                                                                                                                      |     |