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Abstract 

This paper presents a general method to generate points distributed uniformly 

across any arbitrary spatial region or boundary. Although computers can generate one­

dimensional uniform distributions quite effectively, uniform distributions across more 

complex regions in higher dimensions cannot directly be generated. So, this paper 

aims to explore the process of producing points in an arbitrary uniform distribution 

beginning with the generation of only one-dimensional random variables. 

An initial observation is made through exploring the use of parametric equations 

over uniformly distributed parameters to directly produce distributions, which fails to a 

lack of uniformity over the resultant region. A combination of multivariate probability 

theory, vector calculus, and mathematical reasoning leads to a solution applicable 

to continuous and differentiable regions, which is then extended to boundary cases. 

Upon examination of a specific complex case with nondifferentiable points, a geometric) 

approach is then used to improve on and generalize the result. 

The main ~ of this study is summarized as a four-step procedure that can 

be applied to generate uniform distributions over generalized regions and boundaries. 

As an exploration, this paper also evaluates possible problems with the met.hod while 

providing some useful general solutions that can be used in a variety 0J.1distribution 
/ 

problems. The result of this investigation offers the possibility o;· ge Orali,ing other 

one-dimensional distributions to higher dimensions in the future. 

(223 words) 
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1 Introduction 

Uniform probability distributions prove to be a highly useful aspect of mathematics, with 

applications in topics ranging from risk assessment to modeling. Notably, the uniform dis­

tribution is a commonly used p~n (representing information known of an un­

certain parameter before any information is gained) in Bayesian inference ( Gelman 6-7). ------
Additionally, the uniform distribution often forms a precursor to generating a more complex 

distribution, as the most commonly random number generation algorithms used today are 

optimized to generate values with equal probabilities. These algorithms, known as pseudo- .\If 

random number generators (PRNGs), include the Mersenne Twister, Lehmer PRNG, and \ 

linear congruential generators, amongst many others. C,..AJV's f 
One can easily extend these one-dimensional uniform distributions into higher dimensions 

by taking multiple random values as additional Cartesian coordinates, generating distribu-

7 

tions over squares, cubes, tesseracts, and hypercubes. However, uniform distributions over 

arbitrarily (non-hypercube) shaped regions, such as the position of any water molecule in a 

jug, also cannot be generated directly with PRNGs. F~)Monte Carlo modeling of 

photon propagation notably requires the generation of uniform points across the surface of 

a sphere, useful fo~ ~tc1ti?tical.Phl~~nd engineering models (Penzov et al.). Interestingly, 

~hes~ .arbit~~?·ti~iform distri_b~'t.i~~~-9'1Y alread~ quite difficu.lt t~ gener~te even for sha~es as 
mtmtively s1m:pte-m3·nophere; tl1s problem provided the motivat10n behmd an explorat10n of 

\ 

\I S1'ev1 

the topic. This essay will outliie a general method to generate these arbitrary uniform dis­

tributions, constructing a solution through multivariate probability theory, vector calculus, 

and geometry while exploring s~me potentia.-1 mathem~tical p.itfalls .. of :he pr.ocess. t~.. . 

\ \,t0 \.-{A\- e "f-C\. ( \\ '-) V) (A V ~' {j - \ ... 

Naive generation\ Jc,~">~ S\~\-2 
'':) ~ -d, (;Ar 1 ' 

2.1 Sphere distributions - ".Jv-t-v:> • ~-" f ~- n \ 
Parameterization offers a powerful way to express abstract mathematical objects in terms of 

known variables. For example, a up.i.:kpliere~;n be generated \\'ith.itsweU::known.pa.rametric 
/ ~-

equations in spherical coordina~~-x p cos e sin</>, y = p sine sin</>, and z~ where 

0 :::::; p < 1, 0 :::::; </> < 1r, and O :::::; B-<21r The immediate, intuiti;~ appr;ach to ~enerate a 

uniform distribut~~;s this sphere is to randomize the parameters p, e, and ~ uniformly 

for each point. The result of 105 of these points is illustrated in Figure 1, anti the same 

points viewed through the three axis planes are shown in Appendix A, Table /2. 105 was 

chosen as a sufficie~9__yJarge1111mheruf-rattdGU1.J22_ints to fullyJf i1Jalizehe distjbution that 

is generated usini:(uniform parameter distribution;-·,-\ 
'-- _,/ ' 

l:;:iLc\,~__;-::;:,----~--- I 'f u ~ ~· L\co.)L: 

S \.o vrJ ~P'·· 1 (i: \ 
l V'--(,1... v . 

\-\ z 



IB Extended Essay 

Figure 1: Sphere generated by uniform parameters 
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Clearly, this method of generation yields a distribution that does not visually appear uni­

form. The points qualitatively appear more densely distributed about the vertical axis of the 

sphere along the z-axis, with the greatest density of points around the sphere's center. Intu­

itively, this result should be quite predictable, especially when considering the consequences 

of generating p uniformly. While we generated a theoretically equal number of points between 

0 ::::; p < 0.5 and 0.5 ::::; p < 1, the first range encompasses a volume of 41r(0.5) 3 /3 ~ 0.524, 

while the second range encompasses a volume of 41r(13 - 0.53)/3 ::::::; 3.665. Eyidently, an 
i 

equal number of points in both of these regions will result in a denser distributipn across the 

first. J '"\ .f../) · 

r,\_,,\_l . ~ Q.t D 
/ ·, -:Y ~t, \. ' ,,-,I 

\7-' \:i"- '\J'S' 2.2 Jacobian determinants ·· ~ ,v 
. ... . -···- · s..,, . (?"\.;;::::;;:::-v 

/ . ···--, ~ 

To describe this distortion of t~~niform distributi~ii)iathematically, the Jacobian determi-

nant is used; it is the determinant 0Ttne·Tacob1afimatrix of an n-dimensional transformation 

x: IRn -+ IRn of functions X1, X2, ... , Xn over parameters t = (ti, t2, ... , tn), and quantifies the 
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expansion or contraction in volume around every point. The Jacobian matrix is defined as: 

ox 
8t [

~ . .. !E..J..] &t1 8tn 
. . . . . . . . . 
~ ~ 
8t1 8tn 

In the case of the sphere above, its Jacobian determinant is: 

d 
o(x,y,z) 

et----
o(p, ¢, e) 

ax ax ax 
8p 8¢ {)() 

'!Jj_ '!Jj_ '!Jj_ 
8p 8¢ {)() 

{)z {)z {)z 

8p 8¢ {)() 

cos e sin ¢ p cos e cos ¢ - p sin e sin ¢ 

sin e sin ¢ p sin e cos ¢ 

cos¢ -psin¢ 

p cose sin¢ 

0 

= p2 cos2 8 sin rp cos2 rp + p2 sin2 8 sin3 rp 

+ p2 cos2 8 sin3 rp + p2 sin2 8 sin rp cos2 rp 

= p2 sin rp (sin2 8 + cos2 e) (sin2 rp + cos2 rp) 

= p2 sin¢ 

7 

When the Jacobian determinant is a positive va~~~-r:_e1::~e~-!~_an 1, it indicates that th~ volume 

around a point is expanded upon the transformation; as a result, uniformly generated points 
--·•··, , ... ,, .. ,.,,, ... -s,, . ,,,,.-.-.••-- - "'"" "' """- '"----w.,.a••- •--- - -..,-- ~ ~ . ~ --- ' . 

are spaced further apart after transformation. The opposite is true for positive values less 

than 1. For negative values, the Jacobia~JieteJ.:.m~escribes similar behavior, but the 

~~~=~~~~~~_:1 __ ~.!:_!~ese vol u~~ is r~_yersed (~~-~~?r _3,_10};/ 
1
. y . §-::z< p \.CJJ\ V\ 

The Jacobian determinant of our sphere increases as p increases, moving towards the 

sphere boundary, or when¢ is around 1r /2, around the sphere's equator. Hence, the expansion 

in volume is greatest at these areas, and the generated points are spaced furthest apart. 

T.his. de~onstrates that the 'na;·'" /, uniform.. parameter approach does not g~~erat~_:uniform 
d1stnbut10n over the sphere. ./ -> \-- ,:.-,__. C.1,.., ' '-

;:) uv"'-

3 Uniform generation 

3.1 Extension of distributions to higher dimensions 

Although the uniform parameter approach does not directly yield the desired uniform sphere 

distribution, directly adjusting how the parameters are generated should result in a uniform 
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distribution. This requires an extension of probability density functions for a single random 

~-'B,V) to multiple. The definitions below are adaptations of thoseotBillingsley 

(261-262). 

Definition 3.1. For continuous RVs X = (X1 , X 2, ... , Xn), the joint probability density func­

tion fx ~ 0 represents the relative probability that X lies in a set A over values x1, x 2, ... , Xn, 

and satisfies: 

"7'\ 

P(X E A) I r )x(x1, X2, ... , Xn) dx1 dx2 ... dxn 
I )A) 

=Y if A includes all possible X. 

Definition 3.2. The marginal probability density function f X; is equivalent to the joint 

probability density considering only Xi alone, and is obtained through integrating the joint 

probability density function with respect to all variables except xi, satisfying: 

Definition 3.3. The marginal cumulative distribution function Fx; satisfies: 

3.2 Applying distribution adjustments 

While uniformly distributed parameters do not generate unifr.1i~tributions in the general 

case due to the distortion of volumes described by the Jacobian determinant, one might -'---.... ~------------>-
expect that well-chosen non-uniformly distributed parameters can be transformed into the 

-~iform distrib~n we~~ So, the adjustments required should be functions applied to 

-., the generated uniform RV~E [O, 1) which produce that specific non-uniform parameter 

'--'2J~~ ' distribution, counteracting the distortion caused by the parametric equations. 

If we treat the Jacobian determinant as a joint probability density function (which must_ ~------
be first normaJizedTl:mra-udom variables R, <P, e, then the functions r, ¢, (} to apply which 

correspond to those random variables should be equal to the inverses of the marginal cumu­

lative distribution functions for each parameter. The proof of the validity of this method 

will follow in Section 4. Note, however, that the Jacobian determinant is in itself not a 

probability density function, as it often fails to satisfy the requirement of Definition 3.1 that 

the integral of the density over all possible values is equal to 1. So, the Jacobian determinant 

needs to be multiplied by some normalizing constant that produces a distribution function 
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·~_.-.:.:! 

with this property. First: \ V'\_ 

So, 3/41r needs to b~l:ittiplie-ct~ the Jacobian determinant to normalize it into a valid 
. 3 ' density function. Henc , 

4
; p2 sin cf> ji the joint probability density function. Then, each of 

the marginal cumulatiye ·~ns can be directly calculated: 
/ 

/ 

f\ f u~} 
",-;, \-r; 

.,/ 

,,// 

// l
p 1211" 17[ 3 

FR (p) = -p2 sin cf> de/> de dp 
0 0 0 41r 

= 1p 3p2dp 

Frx, (cf>) = !¢, j 2
1T j 1 

2. p2 sin cf> dp de dcp 
lo O O 41r 

= r ! sin cf> de/> 
lo 2 
1 

= 2(1 - cos c/>) 

= sin2 <£ 

1e11r11 3 Fe (e) = -p2 sin cf> dp de/> de 
0 0 0 41r 

'? 
, t l,,:;_ ',:,, V'f'.SLCi...A'L • 

? 
tt~-s 
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= f
0 

]___ de Jo 21r 
e 

27f 

6 

Note that these transformations are nearly identical those used in the Monte Carlo cosine 

weighted random sampling method for uniform point sets on a sphere surface used in image 

rendering (Per;tz;ov- .gt~. The result of 105 points generated by these transformations is 

illustra~ecrr; ~igure))~nd t~e sa~e _poi~ts p~ojected o~to the three axis_ pla~es is also 

shown m ~ast'with the naive d1stnbutions m Appendix A, Table 2. It 1s evident that 
/ 

the distribµtion visually appears quite uniform from all directions, largely contrasting with 
,/l 

the res9>t's in Figure 1. 

// 

. / ,.? 
Figure 2: Sphere generated by adjusted parameters 
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4 Generalization of solutions 

A more rigorous explanation of the validity of the solution to Section 3 is evidently necessary. 

While the general idea of applying the inverse cumulative distribution function is a common 

method of generating a desired distribution from a uniform in one dimension, it is not 

extremely clear how it can be extended into more dimensions. The proof presented can be 

outlined as a solution for the unknown transformations t 1 , t2 , ... , tn involved in the progression 

of random variables illustrated in Figure 3. 

Figure 3: Progression of variable transformations in generalized solution 

Computer-generated Adjusted-distribution Region-distributed 

7 random variables random variables random variables 

RVs wi ti RVs Ti Xi RVs Xi 
with values 1Pi --+ with values ti --+ with values xi 

, 

Uniform Non-uniform Uniform ND \-
across [O, 1) across [O, 1) across shape c 

w 

4.1 Solution for spatial regions c2_-;;.. p\ °'-" ~ 

Suppose our n-dimensional region S is defined through a system of n para~~~~n;- . 

with n parameters x(t) = (x1(t), x2(t), ... , Xn(t)), with t = (t1, t2, ... , tn)~ When 

producing a random point on S, we must generate n uniformly distributed random variates 

w = (w1 , W2 , ... , Wn) across [O, 1r. We must find the transformations ti for each of these 

random variates such that the joint density function f x of independent random variates 

X = x(t(w)) across Sis constant.~ ~for some nonzero constant a when 

x E S. ,···1 i:-..." \_ r _\ •, ,1 r-· ,, ·\~ 0 ' 1.,,.,. VL_..,.,"'--' • 

Theorem 4.1. The inverse function of ti is equal to the marginal cumulative distribution 

function for ~. 

Proof. The marginal probability density function f iJ!; for random variate Wi satisfies: 
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Thus, upon applying the transformation to another random variate Tt, = ti ( W i): 

Therefore: 
d'l/Ji 

fri(ti) = !1JI)'l/Ji(ti)) dti 

8 

It is known that Wi is uniform across [O, 1) and therefore hi('l/Ji) = 1. Then, as ti E [O, 1): 

D 

Using this theorem, we can extrapolate what is needed to obtain k Suppose that R is a 

region in [O, lt which maps by the parametric equations x: R-+ D, where Dis a subregion 

of S. By Definition 3.1, fx satisfies by a variable transformation: 

I'(X ED)~ l fx(x) dx ~ f,- 1 
\ :~1 dt 

The marginal density functions fri (ti) thus satisfy by Definition 3.2: 

The marginal cumulative distribution follows from Definition 3.3: 

(1) 

Hence we have obtained an expression for t-;,- 1
. For region problems in general, the 

approach to creating a uniform distribution will involve computing each Fr; and inverting 

them to obtain ti. With the property that Fr;(l) = 1, the value of a can be determined: 

(2) 
.\Jrc 
v 
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/ J~'\AJ\ \.z. / 
These rat~alll}EE:.&.:~s are only deceptively complex. In three dimensions, 

/r; (ti) is only~~-ble integr_:Y and the Jacobian determinant may sometimes be independent 

with respect to one of tiie parameters. This has already been demonstrated in Section 3, 

where the J acobia1:LQLa .. &phere isim:tependent of the third parl3..met~. In addition, the 
,./"~v"'·-~ --·· ·- ' ""''"••-•·., '·• .,, .... ,_,,,.._,· ·---....\ 

normalizinf(§~~~~an~--~ is~q~i~~- to the total volume~- ~~hich is relatively 

simple to calculate for common regions like the Platonic solids or ellipsoids~~ ~ 7 

4.2 Solution for spatial boundaries 

While Section 4.1 illustrates a generalized solution for regions, such as the region enclosed by 

a sphere, it does not apply to generating a boundary like the surface of the sphere. To solve 

the problem of uniform boundaries, note that boundaries in n dimensions can be expressed 

in terms of a corresponding region; suppose a parameterization x(t) of the space S exists 

such that setting the last parameter tn = 1 obtains a boundary B of S. Then it follows from 

Equation 1 that instead of allowing O :::; tn < 1, it can instead be set to tn = 1 to obtain 

a uniform distribution over B. Thus, the marginal cumulative distributions for a boundary 

can be instead described as ( with i =/= n): 

(3) 

For many of these boundaries we may expect initially that it is difficult to find an appro­

priate region which satisfies this property. Indeed, in the case that the boundary B over n 

dimensions we wish to generate is open, S may not be a finite region. For these situations, a 

parameterization should be obtained directly for B with n - 1 parameters. For most bound­

aries, a multiplication by a new nth parameter is sufficient, generating an artificial region 

for which setting tn = 1 obtains B, as illustrated in Figure 4. Some special cases may have 

better region parameterizations, like the paraboloid distribution; se: Ap~~~~- . \-E' 
· - I) {) .rt> f r1 '" A •, Cl.A "'-· . \ "'- c._ \ I 

~ ,( °"ff+~ v " \} ' er-)· 
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Figure 4: Producing a region from a boundary 
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5 Constructing a solution algorithm 

5.1 Coffee mug distributions 

The solutions presented above may appear to cover most conceivable regions and boundaries. 

However, several assumptions have been made throughout the process. The final result for 

t-;1 clearly shows the condition that the parameterization x(t) should exist and ea0_91~ ,, 
.,,,..-- . ""r:~,r" 

components are differentiable with respect to all ti. This is evidently a problem ii{~ 

for which there may not be a satisfactory x( t) parameterization because of sharp edges and 

vertices. Indeed, many regions that are defined piecewise are ~ondifferentia:12_le at specific_ e.---------- ------~ 
~ _and~ require an improved metnod to modelwith a uniform distribution; this provides 

a motivation to create an even more generalized a ving these cases. 
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Many regions or boundaries for which a uniform distribution must be generated have 

parameterizations that are not differentiable everywhere. However, the problem may be 

simplified by considering that many nondifferentiable regions are essentially unions of mul­

tiple subregions, each of which is differentiable. Consider, for example, a coffee mug region 

S, illustrated in Figure 5; while the mug NI and the handle H regions together approximate 

S and are nondiffer~!_iabli:_~ere t~--19.ls uniform distributions across the mug and 

handle can be generated individually. \ 

Figure 5: A c ee mug region 
i ' 7 -;,< f \..C.A.-,;;_ V\ t"- < '- , 

'v"\"l2.c~ "" 

}2R 

Suppose we want to generate a uniform distribution inside the coffee cup. Region M is 

a cylinder with parametric equations: 

XM(r, e, z) = T" COS e 
YM(r,e,z) = rsine 

ZM(r, e, z) Z 

0:::;: T" < T°M 

o:::;: e < 21r 

0:::;: z < h 
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determinant 

la(xM,YM,zM) I= case -r sine 0 

sine r case 0 
a(r,e,z) 

0 0 1 

= r cos2 e + r sin 2 e 

=r /~'\ 

This is independent of both O and z, so only r must be eor.sidere/ Clearly)he volume 

a 1rr'f.vrh: c/ 

2 lr = - 2- r dr 
rM O 

r2 

11. 
Q'v'"') 

The handle H can be parametrized as a half torus. Its center is located at (rM, 0, h/2), 

and it has the limitation O < R < r H. The half torus has the parameterization: 

X H ( r, e, cp) = r M + ( r H + r COS cp) COS e 

y H ( r, e, cp) = r sin cp 

ZH(r,e,cp) = h/2+(rH+rcoscp)sine 

The Jacobian determinant is: 

a(xH, YH, ZH) 
a(r,e,¢) 

cos¢ cos e 
sin¢ 

cos ¢sine 

( r H + r COS cp) sine -r sin cp COS e 

O r cos¢ 

( r H + r COS cp) COS e -r sin cp sine 

= -r sin¢ (rH + r cos¢ )(sin ¢sin2 e +sin¢ cos2 e) 

- r COS cp ( r H + r COS cp) ( COS cp cos2 e + COS cp sin 2 e) 

= -rsin2 ¢(rH+rcos¢) rcos2 ¢(rH+rcos¢) 

= -r ( r H + r cos ¢) 
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The volume of this half torus is: 

a= f
2
1rj1r/

2 

{R -r(rH+rcosrp)drdedrp 
Jo -1r/2 Jo 

= - f
2

7r 17r
12 

(R2rH /2 + R3 cos ¢/3) de d¢ 
lo -1r/2 

= -1r fo2

1r (R2rH /2 + R3 cos ¢/3) d¢ 

= -11·2 R2rH 

The Jacobian determinant is independent of e. 

1 l,j, 11r/21R F if> ( ¢) = 2fr2-r r ( r H + r cos ¢) dr de d¢ 
7r H O -1r/2 O 

1 l,j, = -- (3rH + 2Rcos¢) d¢ 
611TH o 
3rH¢ + 2Rsin ¢ 

= 

Notably, this expression cannot simply be inverted into commonly used functions due to the 

separate trigonometric 2R sin¢ and polynomial 3rH¢ terms. This also suggests that it is 

necessary to check the validity of this cumulative distribution; for it to be valid, it must be 

monotonically increasing between O ::::; ¢ < 211·. Thus, we require for all ¢: 

This is trivially satisfied with R < rH. Although we may expect a need to find an explicit 

expression for the inverse of Fi!!, it is not required in practice as it can be numerically calcu-
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\ :n.:J: ~ w\L~ -, 
--~. / \._(1 / ~ 

/--c '°"\ \' -

lated. 105 points in each of the two distribution~re illustrated Figures 6 and 7, 

with TM = 1, h = 2, TH = 0.5, and R = 0.2, and projections of these distributions onto the 

three axis planes are illustrated in Appendix A, Figures 9 and 10. ,S\,:I:> 1,.fJ ~ \,a;;;.,e. 
.......... ___. __ __.. ~,.., 

Figure 7: H distribution 
Figure 6: M distribution 

y 0,2 

z 

LO 

LO 

x 

The final step in generating a coffee mug distribution is to combine these two distributions 

such that the overall distribution is uniform. This can be achieved by considering the relative 

volumes of each region; the ratio of volumes of Mand His TF.fh: 1r R2TH. Thus, it would be 

sufficient for :3i hr+ihR2- of points to be chosen from M, and the rest from H. For example, 
rM 1f TH 

in 105 points chosen in S with the values in Figures 6 and 7, approximately 96954 points are 

chosen from M, and the remaining 3046 points are from H. This final result is illustrated 

in Figure 8. 
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Figure 8: A uniform coffee mug distribution 

1.0 

y 0.5 

x 

5.2 The generalized algorithm 

1 .. .. 
•: 

15 

The method to generate any desired region or boundary can be summarized in the following 

algorithm: 

1. Begin with n-dimensional region R. Divide R into continuous subregions { R1, R 2 , ... } 

such that union of all R is R. As this may be difficult to implement in practice, these 

subregions are best decided by human input. Q )"'- (Cv" 
•'/ J '), 

2. For each Ri, compute using its parameterization a Jacobian determinant, multiplying 
,-- ---

the p~~ blZ)t, t~-~i is a boundary. Q .h.!\f\.c·, .\.,;,o,,-" ,.l'> ,;0i--"-1?.r 12.)"- p -~ ~- \ 
3. For each Ri, compute its total volume by integrating the Jacobian determinant over 

the c~mplete region, obtai~ing CYi, Obt~in ~xpres'~n~ for the ;~mul~tiveyis~jbutio~- .. ,·, 

functions FR;,r)tj) for each parameter tj of each \eg1on Ri through mtegratmg com- v"""'""'"-0 

\ 
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f". o\- Q /'- {) l / /;)Y"<C f)' 
~ r · = --

pletely the Jacobian determinant divided by ai over all other parameters and partially (--. __ _ 
for tj, then calculate ( exactly or numerically) their inverses . 
..-- • '2..- ...,e.""' \'t...;, <,. ,,.,~ •. ,,..es-

4. For each random point on R, choose an Ri randomly usif weighted probabilities, 

with weights ai. Then generate with a PRNG n uniformly distributed random values 

over [O, 1) and transform these values by the inverses calculated for the Ri. Apply 

the parametric equations over the transformed values to obtain the desired Cartesian 

point. 

6 Useful solutions 

Section 5 presents a solution algorithm in which sections of complex regions are modularized 

into smaller, manageable subregions. This suggests that subregions that are common to many 

complex regions or a class of regions may appear often, and the inverse transformations for 

these subregions can be computed before even R is known. Examples of these subregions 

are simplices ( especially for polytopes) and quadric surfaces. Table 1 lists some of these 

subregions, their parameterizations, and their required transformat · i). More details ,.,.:..--
including the derivations of these solutions are included · App~ which Table 3 

also illustrates the 'naive' uniform parameter approach and the corrected distributions after 

application of the following solutions. Ly\~"-"-'-

Region 

n-simplex 
with 

vertices Pi 

Ellipsoid 

Table 1: Common subregions and their solutions 

Parameterization 

Xo = Po; 
Xn+l = ln+lXn+ 

(1 - ln+i)Pn+l 

x = ar cos e sin ¢ 

y = br sin e sin ¢ 

z = er cos¢ 

distributions 

Fe(e) = e /21r 

Fif>(¢) = sin2 (¢/2) 

FR(r) = r 3 

Solutions 

e = 21r1/J1 

¢= 2arcsin~ 

r=~ 

Continued on next page 
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Table 1 continued from previous page 

7 

Region 

Paraboloid 
bounded by 

z ~m 

Single-sheet 
hyperboloid 

Double-sheet 
hyperboloid 

Cone 
between 

Zo ~ Z < Z1 

Cylinder 
between 

Zo ~ Z < Z1 

Parameterization 

x = ahr cose 

y = bhrsine 

z = ch2 

x = ar cos e cosh m 

y = br sin e cosh m 

z = csinh m 

x = ar cos e sinh m 

y = br sin e sinh m 

z = ccoshm 

x = arzcose 

y = brz sine 

Z=Z 

x = ar cose 

y = br sine 

Z=Z 

Conclusion 

7.1 Evaluation 

Cumulative 
distributions 

FH(h) = c2h4 /m2 

Fe(B) = 8/21r 

FR(r) = r 2 

See Appendix B.2.3 

F8 (8) = 8/21r 

FR(r) = r 2 

See Appendix B.2.4 

F8 (8) = 8/21r 

FR(r) = r 2 

z3 z3 
Fz(z) = 3 - ~ 

Z1 - Zo 

F8 (8) = 8/21r 

FR(r) = r 2 

Fz(z) = z - zo 
Z1 - Zo 

F8 (8) = 8/21r 

FR(r) = r 2 

Solutions 

h = y'm21j)if c2 

e = 21r1/J2 

r=~ 

Numerical 

e = 21r1/J2 

r=~ 

Numerical 

e = 21r1/J2 

r ~ 

17 

( 3+(3 Zo3) 0 ;,1 )1/3 Z = z0 z1 'f/ 

e = 21r1/J2 

r ~ 

z = zo + (z1 - zo)1/J1 

e = 21r1/J2 

r=~ 

My solution framework modularizes a single complex problem into smaller units. This process 

is greatly reminiscent of a much more common and simpler problem: volume calculation of 

nonregular solids. Consider the coffee cup example of Section 5; to calculate the volume, one 
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would have to calculate the volumes of the half torus and the cylinder separately and add 

them to find the total volume. This seems almost identical to my method, which has simply 

been adapted to consider distributions rather than direct volumes, leading to some interesting 

implications. Nonreducible problems in volumes are also nonreducible in distributions. As 

my method involves a volume calculation step, distribution computation is strictly a 'harder' 

problem than volume computation. Consequently, the 'unit' solutions for distributions form 

strictly a subset of the set of 'unit' solutions for volumes. 

Being 'harder' than volume calculation with almost the same method, uniform distri­

bution computation inherits various problems. Some regions cannot be easily broken down 

precisely into convenient subregions. For example, the coffee cup was approximated as a 

cylinder with a half torus; however, as the cylinder has a curved surface which is connected 

to the flat cross section of the half torus, there is a small region between the cylinder and the 

half torus that is within the coffee cup but not considered in the final distribution. While 

for practical purposes this imperfection may be quite unnoticeable, mathematically the two 

distributions are not equivalent. Sometimes a complex region is also nonreducible, in which 

case the volume and in effect the distribution must be entirely numerically complicated f/' 

nonintegratable parameterizations. , 

Evidently, a more complex method also brings additional problems. For example, the 

half torus component of the distribution could not be completely symbolically computed, 

involving a numerical inverse. Not only is this mathematically a problem, but methods used 

to compute numerical inverses can often lead to roundoff errors or other inaccuracies (Abate, 

Choudhury, and Whitt 15). The existence of the inverse in the first place can be a concern, 

with the half torus being limited by 3rH 2: 2R. Ultimately, this can only be solved by 

choosing 'good' parameterizations for each unique problem. 

7. 2 Further investigation 

Although my method provides solutions in the general case, these solutions are by no means 

the only possible ways to generate uniform distributions over arbitrary regions. For example, 

to generate a unit sphere, it may be sufficient to simply generate points in the unit cube and 

eliminate points outside the sphere. Alternatively, methods such as generating points across 

the sphere 'naively' as shown in Section 2.1, then removing points around the denser center 

with a normalizing probability as per the Jacobian, eliminate the need to use the compu­

tationally heavy inverse sine function. So, further analysis and benchmarking of different 

sampling techniques may help elucidate the differences between these methods. 

Clearly, distributions over regions are also not limited to being uniform. However, hoyi 
I 

I 
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to generalize common one-dimensional distributions to higher dimensions is not entirely ob­

vious. Despite this, some work has been done in this direction, and the normal distribution 

has been generalized to the multivariate case to produce Gaussian distributions over a plane 

(Do). In any case, it is difficult to reconcile the concept of these random variables, dis­

tributed over infinite spatial regions, to discrete, finite regions of space. Additionally, while 

these solutions are quite useful for cases up to three dimensions, where Monte Carlo mod­

eling methods become commonly used approximations of reality, the practical application 

of additional dimensions that my solution offers is still unclear. Even so, an examination of 

the uniform case may provide insight into how to formalize these generalizations f9t future 

investigation. / 

~e:n ~\- ~- c~ 

"t=L~ 
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Appendix A Additional figures 

Table 2: 

Projection Nonuniform sphere 

xy-plane 

x 

yz-plane 

y 

xz-plane 

-115 

x 

y 

0.0 

x 

,-..\ 
\ 
\ 

r{-iJ/l! 

'vvO\~ (2,f" ~ 

20 

0.5 1.0 
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Figure 9: Projections of coffee mug M distribution onto axis planes 

xy-plane yz-plane xz-plane 
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x y 

Figure 10: Projections of coffee mug H distribution onto axis planes 
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Appendix B Derivations and illustrations of Section 6 

solutions 

B. l n-simplical regions 

Let the vertices of the n-simplex be column vectors p0 , p 1 , ... , Pn. The 0-simplex has param­

eterization x 0 () = p0 . The I-simplex (line segment) has the well-known parameterization 

x 1 (t1) = t1p o+ (1- ti)p1 . (n + 1)-simplices can be formed with an infinite number of line 

segments radiating from the next vertex, Pn+i, to all points on a corresponding n-simplex. 

Hence, the n-simplex parameterization follows the recurrence relation xn+l ( t1, t 2 , ... , tn+l) = 

ln+1Xn(t1, t2, ... , tn) + (1 - tn+dPn+i · 
For the Jacobian, we must compute each column vector Bxn/ Bti. The recurrence relation 

implies 8xn/8tn = Xn-1 -Pn· For i < n, 8xn/8ti = tnOXn-i/Bti, so with reductions of the 

RHS until 8xd 8ti, we can obtain: 

The Jacobian determinant of the region is therefore: 

Jq;n J = I~:~ ~: · · · ~::·I 
= lt2t3 · · · tn(xo-P1) t3 t4 · · ·tn(X1 - P2) · · · Xn- 1 - Pnl 

= c(t2t3t4 · · · tn)(t3t4 · · · tn) · · · (tn) 

Here, c = jx0 - p 1 x 1 - p 2 · · · xn- l - Pnl· Consider the recurrence relation rearrange­

ment xi - ti(xi- l - Pi) = Pi and that matrix determinants remain const ant under column 

addition. Hence, by subtracting each kth column by the (k - l)th column with factor tk for 

k '2. 2: 

C = I Po - P 1 P 1 - P 2 · · · Pn-1 - Pnl 

Thus, c is independent of the parameters ti. Finally: 

a = 11 

· · · 11 

cttt~d · · · t~-l dt1 ... dtn 

c 
n ! 
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FT; (ti) = n! 1t; 11 
· · · 11 

t~t~t~ · · · t~-l dt1 ... dti-1 dti+l ... dtn dti 

= t! 

B.2 Quadric surfaces 

B.2.1 Ellipsoid 

23 

Consider an ellipsoid satisfying x2/a2 + y2 /b2 + z2 /c2 = 1. The region has the well-known 

parameterization x(B, ¢, r) = ( ar cos e sin¢, br sine sin¢, er cos¢) for O :::; e < 21r, 0 :::; ¢ < 1r, 

and o :::; r < 1. tax/ at I = -abcr2 sin¢ and a = -4nabc/3: 

B.2.2 Paraboloid 

e 
Fe(B) = 2-rr 

R1; ( ¢) = sin 2 ~ 
FR(r) = r3 

¢( ?j,12 ) = 2 arcsin ~; 

r('l/J3) = ~ 

Consider the region bounded by the paraboloid x2 
/ a2 + y2 

/ b2 - z / c = 0 and the plane z = m. 

This region can be constructed as an infinite number of ellipses parallel to the z-axis between 

the origin and z = m. Hence, with z = ch2
, where O :::; h < ~' the elliptical regions can 

be produced for each z as x = ahr cos 8 and y = bhr sine, where O :::; r < 1 and O :::; 8 < 21r 

(r 1 produces the paraboloid itself). Note that this is not a typical region that is generated 

by multiplying by some h l8(x,y,z)/8(h,8,r)I = -2abch3r and a= -1rabm2/2c: 

B.2.3 Single-sheet hyperboloid 

8(i/J2) = 21r?/,12; 

r(i/J3) = ~ 

Consider the region bounded by the hyperboloid x 2 
/ a2 + y2 

/ b2 
- z2 

/ c2 = 1 and the planes 

z = csinh m 0 and z = csinh m 1 (with m 1 > m 0 ). Like the paraboloid, this may be 

parametrized using an infinite number of ellipses; using this, an appropriate parameteri­

zation is x(m, e, r) (ar cos e cosh m, br sine cosh m, csinh m) for mo :::; m < m 1 . Hence, 
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the Jacobian l8x/8tl = -abcrsinh3 m and a= -1rabc(g(mi) - g(mo))/12, where g(m) = 
9 sinh m + sinh 3m: 

B.2.4 Double-sheet hyperboloid 

Consider the region bounded by the hyperboloid x2 / a2 + y2 / b2 - z2 
/ c2 = 1 and the plane 

z = c cosh m 1 . Like the single-sheet hyperboloid, this may be parametrized using an infinite 

number of ellipses beginning from z = c; an appropriate parameterization is x(m, e, r) = 
(arcosBsinhm,brsinBsinhm,ccoshm) for O :S: m < m 1 . l8x/8tl = -abcrcosh3 m and 

a= -1rabc (g(mi) - 8)/12, where g(m) 9 cosh m - cosh3m: 

B.2.5 Cone 

Consider the region bounded by the cone x 2 
/ a2 + y2 

/ b2 
- z2 = 0 and the planes z = z0 and 

z z1 (with z0 < z1). A common parameterization is x(z, e, r) = (arz cos e, brz sine, z) for 

Zo :S: Z < Z1. l8x/8tl -abrz2 and a -1rab(z{- z5)/3: 

B.2.6 Elliptic cylinder 

e( v12) = 21r1)12; 

r( 1/)3) = V1h 

Consider the region bounded by the cylinder x 2 
/ a2 + y2 /b2 = 1 and the planes z = z0 and 

z z1 ( with z0 < z1). A common parameterization is x( z, e, r) = ( ar cos e, br sine, z) for 
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zo::; z < z1. l8x/8tl = -abr and ex= -1rab (z1 - zo): 

Fz(z) = z - zo 
Z1 - Zo 

e 
Fe(B) = 2'7l" 

FR(r) = r 2 

8(1/J2) = 21r1/J2; 

r(413) = v,f; 

B.3 Illustrations of subsection solutions 

25 

For the variable geometric specifications for each region, refer to the corresponding parame­

terization of the region. All of the corrected distributions were generated using the solutions 

presented in Table 1 with 105 points each. 

Table 3: Illustrations of 'naive' and corrected distributions over Section 6 subregions 

Region and 
specifications 

3-simplex 

Po = ( - 1, 1, -1) 
P1 = (0, 1, 1) 

P2 = ( -1, 0, 1) 
p3 = (1,1,0) 

Uniform parameter distribution Corrected distribution 

0.0 

X 0.5 

Continued on next page 
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Region and 
specifications 

Ellipsoid 

a=l 
b = 0.8 
c = 0.6 

Paraboloid 

m=2 
a=l 

b = 0.75 
c=3 

Single-sheet 
hyperboloid 

mo= -0.5 
m1 = 0.5 
a=l 

b = 0.75 
c = 1 

26 

Table 3 - continued from previous page 

Uniform parameter distribution Corrected distribution 

-1.0 

LO 

Continued on next page 



IB Extended Essay 

Region and 
specifications 

Double-sheet 
hyperboloid 

m1 = 1.5 
a=l 

b = 0.75 
c=l 

Cone 

Zo = 0 
Z1 = 2 
a=l 

b = 0.75 

Cylinder 

Zo = -1 
Z1 = 1 
a=l 

b = 0.75 

27 

Table 3 - continued from previous page 

Uniform parameter distribution Corrected distribution 

LO -LO 
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