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Abstract

This paper presents a general method to generate points distributed uniformly
across any arbitrary spatial region or boundary. Although computers can generate one-
dimensional uniform distributions quite effectively, uniform distributions across more p
complex regions in higher dimensions cannot directly be generated. So, this paper /,;ﬁ
aims to explore the process of producing points in an arbitrary uniform distribution / A 9\\4;
beginning with the generation of only one-dimensional random variables.

An initial observation is made through exploring the use of parametric equations
over uniformly distributed parameters to directly produce distributions, which fails to a
lack of uniformity over the resultant region. A combination of multivariate probability
theory, vector calculus, and mathematical reasoning leads to a solution applicable el
to continuous and differentiable regions, which is then extended to boundary cases. I J;/\C\(P
Upon examination of a specific complex case with nondifferentiable points, a geometric /
approach is then used to improve on and generalize the result. '

The main result of this study is summarized as a four-step procedure that can

be applied to generate uniform distributions over generalized regions and boundaries.
As an exploration, this paper also evaluates possible problems with the method while
providing some useful general solutions that can be used in a variety o}f;«*ﬂistribution (C{;’*’V “
problems. The result of this investigation offers the possibility of ge ’&alizing other

one-dimensional distributions to higher dimensions in the future.

(223 words)
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1 Introduction

Uniform probability distributions prove to be a highly useful aspect of mathematics, with
applications in topics ranging from risk assessment to modeling. Notably, the uniform dis- 1
tribution is a commonly used pﬂerﬁjﬂrjbgﬁc\ipn (representing information known of an un- “\,‘5\"“‘”( )
certain parameter before any information is gained) in Bayesian inference (Gelman 6-7).
Additionally, the uniform distribution often forms a precumﬁga more complex
distribution, as the most commonly random number generation algorithms used today are
optimized to generate values with equal probabilities. These algorithms, known as pseudo- |
random number generators (PRNGs), include the Mersenne Twister, Lehmer PRNG, and lt
linear congruential generators, amongst many others. e~ ()h”’

One can easily extend these one-dimensional uniform distributions into higher dimensions
by taking multiple random values as additional Cartesian coordinates, generating distribu-
tions over squares, cubes, tesseracts, and hypercubes. However, uniform distributions over
arbitrarily (non-hypercube) shaped regions, such as the position of any water molecule in a 3
jug, also cannot be generated directly with PRNGs. F&i exarnple; ‘Monte Carlo modeling of &} 5\»*61'“
photon propagation notably requires the generation of uniform points across the surface of \
a Sphere useful for Statlstrcal physre&\nd englneerlng models (Penzov et al.). Interestingly,
intuitively siifiple-as-a-sphere; ’”tlﬁrs problem provided the motivation behind an exploration of
the topic. This essay will outlu&e a general method to generate these arbitrary uniform dis-
tributions, constructing a solution through multivariate probability theory, vector calculus,

and geometry while exploring same potential mat_hematical pitfalls of the process.
Lowoa € Fackl I wA
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2.1 Sphere distributions T Ao mivtd - @x* a2l
Yo
ﬂ(ig, Parameterization offers a powerful way to express abstract mathematlcal objects in terms of

K
yuw-\"‘{" known variables. For example, a umbsphere can be generated with its wall-known. parametrlc

N -
o \\\)(r; equations in spherical coordinafes z = pcosfsing, y = psin@sin ¢, and 2 —/pC,OSrtzb/ where
-

Q,VDEL
A ,\u} uniform distribution across this sphere is to randomize the parameters p, 8, and g? uniformly
s e

e,

0<p<1,0L ¢ <7 and 0 <0 < 21 The immediate, intuitive approach to \generate a

[,

oRe for each point. The result of 10° of these points is illustrated in Figure 1, andl the same
J

3 v\\ points viewed through the three axis planes are shown in Appendix A, Table;2. 10° was
chosen as a sufﬁmently&arge*rmmber*ofra:&dem points to fully vi ididdalizehe distribution that

is generated usmg’\nlform parameter distributions. - =y
e
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Figure 1: Sphere generated by uniform parameters ~—— \‘)\ e

1.0

Clearly, this method of generation yields a distribution that does not visually appear uni- ;
/

form. The points qualitatively appear more densely distributed about the vertical axis of the //

sphere along the z-axis, with the greatest density of points around the sphere’s center. Intu- ~
itively, this result should be quite predictable, especially when considering the consequences
of generating p uniformly. While we generated a theoretically equal number of points between
0<p<0.5and0.5 < p <1, the first range encompasses a volume of 47(0.5)%/3 =~ 0.524,

while the second range encompasses a volume of 47 (13 — 0.5*)/3 ~ 3.665. Eyidently, an

)i

/
equal number of points in both of these regions will result in a denser distribuj:}én across the

first. v AL o Q/y
f\/:\u N i '\r et Q\ \?"ﬂ 7y
: : ;7"»’&\”9/“ oo \J\\,JJM *‘Z
2.2 Jacobian determinants . 3@’3 7 o) X

N ,u*-.r 5 )‘

To describe this distortion of tl@unlform distribution mathematlcally, the Jacobian determl— K

x:R* — R” of functions z1, s, ..., T, over parameters t = (ty, ¢, ..., t,), and quantifies the
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expansion or contraction in volume around every point. The Jacobian matrix is defined as:

8z ... 9z

ot ot
8x ‘1 ' .n
ot

Ozp .. Oz

oty Otn,

{ oo ’Z':‘Ym
\‘\3 C\" 'S \.QQA ¢
o oy

In the case of the sphere above, its Jacobian determinant is:

9z gz Oz _
(I Y Z) 0p 0O¢ 00 ol
Bt |0y Sy By N
deta( $,0) |9 96 06 W W =
P @ 8z 0Oz Oz T o oyt -

~
et
cosflsing pcosfcos¢g —psinfsing 7/ v

b % 0 v
= |sinfsing psinfcosd pcosfsing )
cos ¢ —psin ¢ 0

= p?cos? B sin ¢ cos? ¢ + p?sin®f sin® ¢ )

+ p? cos® @ sin® ¢ + p? sin® § sin ¢ cos? ¢ "7
= p? sin ¢ (sin® 6 4 cos? §)(sin? ¢ + cos® ¢) Y
= p’sin¢

When the Jacobian determinant is a posmve Value greater than 1, it indicates that the volume

M

are Spaced further apart after transformatlon The opposﬁ:e is true for positive values less
than 1. For negative values, the Jacobian detexsmme.m\gescrlbes similar behavior, but the

orlentatlon of these volumes is reversed ((Amldror 310) '——7{-}1 \ ﬂuu\t X_:l’?i “)K GAN
oo \"“"va—.

" The Jacobian determinant of our sphere fflcreases as p increases, moving towards the
sphere boundary, or when ¢ is around /2, around the sphere’s equator. Hence, the expansion
in volume is greatest at these areas, and the generated points are spaced furthest apart.
This demonstrates that the ‘naiyé’ uniform parameter approach does not generate a uniform
distribution over the sphere. e L e oy b N M Seccoblom

‘o \—“c..x*‘%./m e O M*;s\ e iy

i i A NON wmade C [
3 Unlform generatlon

3.1 Extension of distributions to higher dimensions

Although the uniform parameter approach does not directly yield the desired uniform sphere

distribution, directly adjusting how the parameters are generated should result in a uniform
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distribution. This requires an extension of probability density functions for a single random
‘\_/a,r’iap_le,_(EV) to multiple. The definitions below are adaptations of those%ﬁﬁﬁngsler
(261-262).

Definition 3.1. For continuous RVs X = (X1, Xa, ..., Xn), the joint probability density func-
tion fx > 0 represents the relative probability that X lies in a set A over values x,,%s, ..., Tp,

and satisfies:

7N ‘
s, ‘,; N 3 ./{.m
P(X e A) ;// f (21, %2, ..., Tp) dzy dzg ... dpy N&¥ ‘CKCL -
i\\ 4 Lo ey s
="1t" if A includes all possible X. o o>
Definition 3.2. The marginal probability density function fx, is equivalent to the joint
probability density considering only X; alone, and is obtained through integrating the joint
probability density function with respect to all variables except x;, satisfying: -~
{f“"\’* ot
fx,(x;) —/ / fx(x1, 29, .oy 2n) d2y . dzi_y dTiy ... dxp \”}5 4.
Definition 3.3. The margmal cumulative distribution function Fy, satisfies:
x; ; I
_ P ot o e >
Pt = [ fuda)de O b e
Y Se of
. . . . . *"3 e X v%:,";\&lg;’:/
3.2 Applying distribution adjustments QoY 7 /;Z.Nc,,a‘o ﬁtwh -
While uniformly distributed parameters do not generate unifor distributions in the general
case due to the distortion of volumes descrlbed by the Jatobian determinant, one might
. SO M"’”
expect that well-chosen non-uniformly dlstrlbuted parameters can be transformed into the
uniform distribution we desire. So, the adjustments required should be functions applied to
n the generated uniform RV@E [0,1) which produce that specific non-uniform parameter
g}“@ & " distribution, counteracting the distortion caused by the parametric equations. v
Qf“’ If we treat the Jacobian determinant as a joint probability density function (which must

be first no.r.mahmd).fm_mndom variables R, ®,0, then the functions r, ¢, 0 to apply which

correspond 1d to those random variables should be equal to the inverses of the marginal cumu-
lative distribution functions for each parameter. The proof of the validity of this method
will follow in Section 4. Note, however, that the Jacobian determinant is in itself not a
probability density function, as it often fails to satisfy the requirement of Definition 3.1 that
the integral of the density over all possible values is equal to 1. So, the Jacobian determinant

needs to be multiplied by some normalizing constant that produces a distribution function
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with this property. First: . /»/f et S ol i N \“g‘fifgff’vk NL L
dpd¢d9—/ / / p*sin ¢ dpdg d
27
:/ / [~p3 sin (15} do do
27
/ / —sin ¢ d¢ df
= ——=cos¢| db
[ s,
27
2
:i/ 2 4
0 3
A
3
So, 3/4 needs to be mu}t“fpi the Jacobian determinant to normalize it into a valid

density function. Henc{S’l sm¢ i’ the joint probability density function. Then, each of

the marginal cumulati 1ons can be directly calculated:

, / / / = pPsin g do df dp
’¥ 03\5‘ - /0 35 dp

TN Vo \‘2)‘"
3
{ . A =0 .. .
eyl - P . - e - el -
" e CrB0=V ) Dkl Deentlas wasn
ﬁ@\“’&‘ — L /
[ 2 1 3
i« F¢(¢)=/ / 4—p2sin¢dpd9d¢
0o Jo Jo &T
1
:/0 é-sm(zﬁd(zﬁ
1
= ~(1— cos ¢)
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Note that these transformations are nearly identical those used in the Monte Carlo cosine
weighted random sampling method for uniform point sets on a sphere surface used in image
rendering ( Penzov et a,,\) The result of 10° points generated by these transformations is
illustrated”in Figure 2 /and the same points projected onto the three axis planes is also
shown mdm? with the naive distributions in Appendix A, Table 2. It is evident that
the distrib}tfion visually appears quite uniform from all directions, largely contrasting with

the resglfg in Figure 1.

Figure 2: Sphere generated by adjusted parameters
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4 Generalization of solutions

A more rigorous explanation of the validity of the solution to Section 3 is evidently necessary.
While the general idea of applying the inverse cumulative distribution function is a common
method of generating a desired distribution from a uniform in one dimension, it is not
extremely clear how it can be extended into more dimensions. The proof presented can be
outlined as a solution for the unknown transformations ¢y, to, ..., t,, involved in the progression

of random variables illustrated in Figure 3.

Figure 3: Progression of variable transformations in generalized solution

Computer-generated Adjusted-distribution Region-distributed
random variables random variables random variables
RVs \I’i ti RVs CT, Ty RVs Xi
with values 1, - with values t; - with values z; -
Uniform Non-uniform Uniform No ¥ B
across [0,1) across [0,1) across shape flecst
e Rt
TN ~
. . . vﬁ\Q/fVﬂ o
4.1 Solution for spatial regions
2 A
Suppose our n-dimensional region S is defined through a system of n parametric e ions

with n parameters x(t) = (21(t), z2(t), ...,z (t)), with t = (1,3, ..., t")@w When
producing a random point on S, we must generate n uniformly distributed random variates
U = (W, ¥y, ..., ¥,) across [0,1)". We must find the transformations t; for each of these
random variates such that the joint density function fx of independent random variates

X = x(t(¥)) across S is constant. (Thus, fx(x) = a~! for some nonzero constant « when
RS,

XES. ) N C'\M C\ﬁ 770 G

Theorem 4.1. The inverse function of t; is equal to the marginal cumulative distribution
function for T;.

Proof. The marginal probability density function fg, for random variate ¥, satisfies:

b
Pla< U <b)= / Fo,(4) d
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Thus, upon applying the transformation to another random variate T; = t;(\¥;):
0 dm ’
Plila) S To< b)) = [ fon(use) G s 7
ti(a)

Therefore:

fr,(t:) = fo, (L)) ?fl

It is known that ¥, is uniform across [0,1) and therefore fg,(1;) = 1. Then, as t; € [0,1):

dip;
fr.(ti) = dlf
d)z(ti) d s
Fo(ts) = /O dlf. dt,
= 1;(t;)

ti(1) = Fﬂ1(¢i)
Ol

Using this theorem, we can extrapolate what is needed to obtain ¢;. Suppose that R is a
region in [0, 1)™ which maps by the parametric equations x : R — D, where D is a subregion

of S. By Definition 3.1, fx satisfies by a variable transformation:

P(XeD)i/Ljfx(x)dx:La'l

The marginal density functions fr,(t;) thus satisfy by Definition 3.2:

w=at [ [

The marginal cumulative distribution follows from Definition 3.3:

ox

5 dt

Q% dty ... dtioy dtiyr ... dty

FT i ——a"l

2

dtl Lty iy ... dt dt; (1)

Hence we have obtained an expression for t;’l. For region problems in general, the
approach to creating a uniform distribution will involve computing each Frr, and inverting
them to obtain t;. With the property that Fr,(1) = 1, the value of & can be determined:

dtl / dx (2)
s i,
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These rather daunting Ws are only deceptively complex. In three dimensions,

fr.(t;) is only & double 1ntegral,- and the Jacobian determinant may sometimes be independent

with respect to one of the parameters. This has already been demonstrated in Section 3,

where the Jacobian of a sphere is-independent of the third paramete&\@ In addition, the
\

normahzmg\constant  is equivalent to the total volume of tWhlch is relatlvely

3

(:3 = 2 i [EE N

AUR————— ———

simple to calculate for common regions like the Platonic solids or elhpsmds.\ 3 W

4.2 Solution for spatial boundaries

While Section 4.1 illustrates a generalized solution for regions, such as the region enclosed by
a sphere, it does not apply to generating a boundary like the surface of the sphere. To solve
the problem of uniform boundaries, note that boundaries in n dimensions can be expressed
in terms of a corresponding region; suppose a parameterization x(t) of the space S exists
such that setting the last parameter ¢, = 1 obtains a boundary B of S. Then it follows from
Equation 1 that instead of allowing 0 < t,, < 1, it can instead be set to ¢, = 1 to obtain
a uniform distribution over B. Thus, the marginal cumulative distributions for a boundary
can be instead described as (with i # n):

FTi (tl) = Qﬁl tl dti_l dti—l—l dtn~1 dtl (3)

t th=1

For many of these boundaries we may expect initially that it is difficult to find an appro-
priate region which satisfies this property. Indeed, in the case that the boundary B over n
dimensions we wish to generate is open, S may not be a finite region. For these situations, a
parameterization should be obtained directly for B with n — 1 parameters. For most bound-
aries, a multiplication by a new nth parameter is sufficient, generating an artificial region
for which setting ¢, = 1 obtains B, as illustrated in Figure 4. Some special cases may have

better region parameterizations, like the paraboloid distribution; see Appendix B.2.2.

Pay eft
a( wg’?"”“’”

A\

AWRe e !

i

ke
f [
(:;3
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Figure 4: Producing a region from a boundary

10

(tl'; fQ; eery tn——l)

.N’\\‘ -

i

{

tn x(t, b, ..., tn-1)

10 0

5 Constructing a solution algorithm

5.1 Coffee mug distributions

The solutions presented above may appear to cover most conceivable regions and boundaries.
4

However, several assumptions have been made throughout the process. The final result for \ ¢
N
o

t;* clearly shows the condition that the parameterization x(t) should exist and each of its
et - ..,’t\f/

components are differentiable with respect to all ¢;. This is evidently a problem il(golytopes,

for which there may not be a satisfactory x(t) parameterization because of sharp edges and

A

vertices. Indeed, many regions that are defined piecewise are nondifferentiable at specific

poi/‘n_;,g, andwféﬂcﬂiﬁife an improved method to model withia uniform distribution; this provides

a motivation to create an even more generalized algori ving these cases.

@ 7,(5&/)'\««,«?\&; -
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The,,j"'fJacobian determinant is:

R S Y \/\,'uf ~
i cosf —rsinf 0
O xar, yms 2m)| |
— | = |ginf rcosf O
a(r,0, 2)
0 0 1
= rcos?f 4 rsin? 6
=T / o "
o ‘?7“\

This is independent of both 6 and 2, so only r must be considered. Clearly, ;che volume

a = 7rih: / \‘/
\lf o /\
2n e Q‘“\L\ %
Fr(r) = —5 / / / rdzdfdr < \)\3( R ‘\§ 2.0
M L
W
= TN
TM 0 e O
T2 [ \v\r&:/
T2, g Toob o

..... Mww» = 7 2 oy

The handle H can be parametrlzed as a half torus. Its center is located at (73,0, h/2),

and it has the limitation 0 < R < rgy. The half torus has the parameterization: .

P e
xg(r,0,¢) =ra + (rg +rcos @) cosf 0<r<R \7 i \)
yr(r,0,¢) =rsing ~7r/2,<,9<7r/21 Sdg\wbu\
zp(r,0,¢) = h/2+ (rg+rcos¢)sind 0<¢<2m P /

The Jacobian determinant is:

cospcosf —(rg+rcosd)sinf —rsingcost
sin ¢ 0 r COS @

cospsingd (rg+rcosg)cosf —rsingsinf

la(IH:yH:ZH” —

| 0(r,0,8) |

= —rsin ¢ (rg 4 r cos ¢)(sin ¢ sin® 6 + sin ¢ cos® 6)
—rcos (ry + rcos@)(cos ¢ cos® 6 4 cos ¢ sin® )
= —rsin® @ (ryg + 1 cos @) — rcos? ¢ (rg 4 1 cos @)

= —r(rg +rcosd)

ra
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The volume of this half torus is:

27 pm/2 R
az/ / / —r (ryg +7cos¢)drdfdo
—7/2

2r  pm/2
/,/ R*ry/2 4+ R*cos¢/3) df do

Tr/2
= /(mmp+mmwm)
0

= —71'2R2’I"H

The Jacobian determinant is independent of 6.

1 T 27 /2
FR(T):M/U /0 [ﬁ/2r(rH+rcos¢)d0d¢dr

_ 2 /Tr rd
ﬂR2’I"H 0 HE AT . -
72 . ,\%\Fg\q\ﬁ‘\»‘”
o N L S P
9 e 7

( r(y) = Rf

/2 R
Fo(¢) = 7T2'R2‘I“H/ /W/Q/o r(rg +rcos@)drdf do

67"TH/0 (3rg + 2R cos ¢) dp

_ 3ru¢p+2Rsing
- omry

Notably, this expression cannot simply be inverted into commonly used functions due to the
separate trigonometric 2R sin ¢ and polynomial 3ry¢ terms. This also suggests that it is
necessary to check the validity of this cumulative distribution; for it to be valid, it must be

monotonically increasing between 0 < ¢ < 27. Thus, we require for all ¢:

d 37"H¢+2Rsin¢>0
d¢ 6nry - . >
3TH+2RCOS¢ZO oy w\'\ux f&ﬁﬁh‘*w S‘\?/L(W
3rg—2R>0Y (ry>R>0)

This is trivially satisfied with R < rgy. Although we may expect a need to find an explicit

expression for the inverse of Fg, it is not required in practice as it can be numerically calcu-
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lated. 10° points in each of the two distributionéf\c)EWre illustrated Figures 6 and 7,

with 7y = 1, h =2, 7y = 0.5, and £ = 0.2, and projections of these distributions onto the

three axis planes are illustrated in Appendix A, Figures 9 and 10. “Ns AU o Wes

Figure 7: H distribution

Figure 6: M distribution

1.0

T 1.6

The final step in generating a coffee mug distribution is to combine these two distributions
such that the overall distribution is uniform. This can be achieved by considering the relative
volumes of each region; the ratio of volumes of M and H is 72,h : 7 R?*ry. Thus, it would be
sufficient for ;Z;‘E%%g;; of points to be chosen from M, and the rest from H. For example,
in 10° points chosen in S with the values in Figures 6 and 7, approximately 96954 points are
chosen from M, and the remaining 3046 points are from H. This final result is illustrated

in Figure 8.



15

IB Extended Essay

Figure 8: A uniform coffee mug distribution

5.2 The generalized algorithm

The method to generate any desired region or boundary can be summarized in the following

2

o X

algorithm:
1. Begin with n-dimensional region R. Divide R into continuous subregions {R;, Rs,
-~ L

such that union of all R; is R. As this may be difficult to implement in practice, these
- 2% \v L“\j Py

r’"
-~

subregions are best decided by human input
< /)f\{,_u\ wi

2. For each R,;, compute using its parameterization a Jacobian determinant, multiplying
PR L xf

the parametric equations by ¢, if R; is a boundary.
S L‘O\'—,g\\ . \3W1f7:\%\/%< Le“'\/‘“\v"% Lo >
3. For each R;, compute its total volume by 1ntegrat1ng the Jacobian determinant over
the complete region, obtalnlng ;. Obtain expres§ions for the Cumulatlve distribution

pIeEs
(f{j?fa»”\j
functions Fg, z,(t;) for each parameter ¢; of each yegion R; through integrating com- ©=ed 4 -

~

,:\ kS

})\“\J\) Tuis v\*fﬂ'(fuﬁ W o
(S i"k
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pletely the Jacobian determinant divided by «; over all other parameters and partially
L —,

for ¢;, then calculate (exactly or numerically) their inverses.

4. For each random point on R, choose an R; randomly using weighted probabilities,

with weights ;. Then generate with a PRNG n uniformly ‘distributed random values

over [0,1) and transform these values by the inverses calculated for the R;. Apply
the parametric equations over the transformed values to obtain the desired Cartesian

point.

6 Useful solutions

Section 5 presents a solution algorithm in which sections of complex regions are modularized
into smaller, manageable subregions. This suggests that subregions that are common to many
complex regions or a class of regions may appear often, and the inverse transformations for
these subregions can be computed before even R is known. Examples of these subregions
are simplices (especially for polytopes) and quadric surfaces. Table 1 lists some of these
subregions, their parameterizations, and their required trwi) More details
s !

including the derivations of these solutions are included 41 Appendix B, ig which Table 3
also illustrates the ‘naive’ uniform parameter approach and the corrected distributions after
application of the following solutions. [5 \v\@w\& \oe i€

Table 1: Common subregions and their solutions

Region Parameterization C.urr.lulat.lve Solutions
distributions
n-simplex Xo = Po; -
with Xnt1 = bnt1ZTn+ FTi (tl) = tz t; = ﬂz
vertices p; (1 —tpi1)Pnst
T = arcosfsin ¢ F@(G) = 9/271— 0 = 2w,
Ellipsoid y = brsinfsin ¢ Fg(¢) = sin? (¢/2) ¢ = 2arcsin v/
Z = crcos ¢ Fp(r) =1r° r= /i

Continued on next page

Coampr—— NI \"ua [ A %\"{ﬂ'x\w‘f”ij ®

)
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Table 1 — continued from previous page

. o Cumulative _
Region Parameterization distributions Solutions
Paraboloid x = ahr cost Fy(h) = c2h4/m2 h = /m?i, /e
bounded by y = bhrsin 6 Fo(0) =0/2n 0 = 2m)y

zsm z=ch® Fr(r) =r? = /13

Single-sh & = ar cost coshm See Appendix B.2.3 Numerical
ees e-et y = brsinf coshm Fo(0) =6/2m 0 = 2mi),

hyperboloid
z = ¢sinhm FR(T):T,Z . \/%

Doubl x = ar cosfsinhm See Appendix B.2.4 Numerical
oub e—shget y = brsinfsinhm Fo(9) =6/2n 0 =2y,
hyperboloid )
2z =ccoshm Fr(r)=r T =3
3_ .3
Cone x = arzcosf Fz(z) = 2—3————2—% 2= (25 + (2 = R)v)?
between y=brzsind Lo 0 = 2m1y
Fo(0)=10/2n
20 < z< 2 2=z 5 T = /103
Fr(r)=r
Cylinder & = arcosf Fz(z2) = j —~ ZZOO z =20+ (21 ~ 20)h
1 - )
_ ; 0 =2n
. bit\;reinz y=brsinf Fo(0) = 0/2n (o 7
0= 1 z2=2 FR(T‘):T2 T‘:\/% B
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7 Conclusion

7.1 Evaluation

My solution framework modularizes a single complex problem into smaller units. This process
is greatly reminiscent of a much more common and simpler problem: volume calculation of
nonregular solids. Consider the coffee cup example of Section 5; to calculate the volume, one

>

s
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would have to calculate the volumes of the half torus and the cylinder separately and add
them to find the total volume. This seems almost identical to my method, which has simply
been adapted to consider distributions rather than direct volumes, leading to some interesting
implications. Nonreducible problems in volumes are also nonreducible in distributions. As

my method involves a volume calculation step, distribution computation is strictly a ‘harder’

4 d
s

problem than volume computation. Consequently, the ‘unit’ solutions for distributions form if’f

o

strictly a subset of the set of ‘unit’ solutions for volumes.

Being ‘harder’ than volume calculation with almost the same method, uniform distri-
bution computation inherits various problems. Some regions cannot be easily broken down
precisely into convenient subregions. For example, the coffee cup was approximated as a
cylinder with a half torus; however, as the cylinder has a curved surface which is connected
to the flat cross section of the half torus, there is a small region between the cylinder and the
half torus that is within the coffee cup but not considered in the final distribution. While

for practical purposes this imperfection may be quite unnoticeable, mathematically the two

distributions are not equivalent. Sometimes a complex region is also nonreducible, in which

case the volume and in effect the distribution must be entirely numerically complicated ff;y

nonintegratable parameterizations.

Evidently, a more complex method also brings additional problems. For example, the
half torus component of the distribution could not be completely symbolically computed,
involving a numerical inverse. Not only is this mathematically a problem, but methods used
to compute numerical inverses can often lead to roundoff errors or other inaccuracies (Abate,
Choudhury, and Whitt 15). The existence of the inverse in the first place can be a concern,
with the half torus being limited by 3rgz > 2R. Ultimately, this can only be solved by

choosing ‘good’ parameterizations for each unique problem. V/

7.2 Further investigation

Although my method provides solutions in the general case, these solutions are by no means
the only possible ways to generate uniform distributions over arbitrary regions. For example,
to generate a unit sphere, it may be sufficient to simply generate points in the unit cube and
eliminate points outside the sphere. Alternatively, methods such as generating points across
the sphere ‘naively’ as shown in Section 2.1, then removing points around the denser center
with a normalizing probability as per the Jacobian, eliminate the need to use the compu-
tationally heavy inverse sine function. So, further analysis and benchmarking of different
sampling techniques may help elucidate the differences between these methods.

Clearly, distributions over regions are also not limited to being uniform. However, how

¢

/
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to generalize common one-dimensional distributions to higher dimensions is not entirely ob-
vious. Despite this, some work has been done in this direction, and the normal distribution
has been generalized to the multivariate case to produce Gaussian distributions over a plane
(Do). In any case, it is difficult to reconcile the concept of these random variables, dis-
tributed over infinite spatial regions, to discrete, finite regions of space. Additionally, while
these solutions are quite useful for cases up to three dimensions, where Monte Carlo mod-
eling methods become commonly used approximations of reality, the practical application
of additional dimensions that my solution offers is still unclear. Even so, an examination of

the uniform case may provide insight into how to formalize these generalizations ngr‘"' future
.v‘fy

investigation. /w
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Appendix B Derivations and illustrations of Section 6

solutions

B.1 n-simplical regions

Let the vertices of the n-simplex be column vectors pg, pt; ..., P»- The O-simplex has param-
eterization xg() = po. The l-simplex (line segment) has the well-known parameterization
x1(t1) = tip ot (1 — t1)p1. (n + 1)-simplices can be formed with an infinite number of line
segments radiating from the next vertex, pp+1, to all points on a corresponding n-simplex.
Hence, the n-simplex parameterization follows the recurrence relation x, .1 {1, ts, ..., t41) =
b1 Xn(t1, ta, oo b+ (1 — 1) Prst-

For the Jacobian, we must compute each column vector 8x, /dt;. The recurrence relation
implies 0%, /0ty = Xp—1 — Pn. For i < n, 0x,/0t; = t, 0x,_1/9%;, so with reductions of the
RHS until dx;/0¢t;, we can obtain:

Xy, o
o, = tatp-1 - 'ti-kla—tqb = tiribirn b (X — Do)

1

The Jacobian determinant of the region is therefore:

Oxn| _ | 0% O
gt Oty Oty Ol
= }tgta cotp{xo—P1) fats-ct{xi —P2) 0 Xn1— Pa
= ctataty - tn)(tats tn) - (t,)
= ctytsts !
Here, ¢ = |xg—p1 X, — Pz -+ Xp—1— Pn|- Consider the recurrence relation rearrange-

ment x; — t;(x;_ 1 — P;) = P; and that matrix determinants remain constant under column
addition. Hence, by subtracting each kth column by the (£ - 1}th column with factor #; for
E>2:

¢c=[po—P1 Pi1—P2 *** Pn1—Pnl

Thus, ¢ is independent of the parameters ¢;. Finally:

1 1
a_/ f b2ty L dt,
0 0
c

T opl
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t; 1 1
FTi(ti)-——n!/ / / tytats - thldty L dt oy At .. dt, dE
0 0 0
=t '

ti(1hi) = /i

B.2 Quadric surfaces
B.2.1 Ellipsoid

Consider an ellipsoid satisfying z2/a? + y?/b* + 22/c® = 1. The region has the well-known
parameterization x(6, ¢,7) = (ar cos@sin ¢, br sinfsin ¢, crcos @) for 0 < 6 < 27,0 < ¢ < 7,
and 0 <7 < 1. |0x/0t| = —aber?sin¢ and o = —4dwabe/3:

— 9(w1) = 271'7,[)1;
S p() = 2aresin /s,

Fpiry=7* = r(ys) = /s

B.2.2 Paraboloid

Consider the region bounded by the paraboloid 2 /a?+y?/b — 2/c = 0 and the plane z = m.
This region can be constructed as an infinite number of ellipses parallel to the z-axis between
the origin and z = m. Hence, with 2z = ch?, where 0 < h < \/mi/c, the elliptical regions can
be produced for each z as x = ahr cos@ and y = bhr sinf, where 0 <r <1 and 0 <8 < 2rn
(r = 1 produces the paraboloid itself). Note that this is not a typical region that is generated
by multiplying by some t3. |0(z,y, 2)/0(h,0,7)| = —2abch®r and a = —wabm?/2c:

254 2
FH(h):%%— - h(wl)z\“/mcfl;

Folf) = & & 6(sy) = 274

T on

Fp(ry=7* = () = /9

B.2.3 Single-sheet hyperboloid

Consider the region bounded by the hyperboloid z%/a? + 32/ — 2%/c®* = 1 and the planes
z = csinhmgy and z = c¢sinhm; (with my; > myg). Like the paraboloid, this may be
parametrized using an infinite number of ellipses; using this, an appropriate parameteri-

zation is x(m, 8,7) = (ar cosécoshm, brsinf coshm, csinhm) for mg < m < m;. Hence,
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the Jacobian |0x/0t| = —abersinh®m and o = —7wabe (g(my) — g(mo))/12, where g(m) =

9sinhm + sinh 3m:

_ g(m) = g(mo)
g(m1) — g(mo)’
= O(1h2) = 2mihy;

Fg(r) =72 — r(¥s) = Vs

B.2.4 Double-sheet hyperboloid

Consider the region bounded by the hyperboloid 22/a? + y?/b? — 22 /c®> = —1 and the plane
z = ccosh my. Like the single-sheet hyperboloid, this may be parametrized using an infinite
number of ellipses beginning from z = ¢; an appropriate parameterization is x(m,f,r) =
(ar cos@ sinhm, brsin @sinhm, ccoshm) for 0 < m < my. |9x/0t| = —aber cosh®* m and

a = —rmabe (g(my) — 8)/12, where g(m) = 9 coshm — cosh 3m:

_ g(m) -8
Fy(m) = o) — 8’
Fo(8) = % — 0(1hg) = 2miba;

Fg(r)=r? — r(1s) = /U3

B.2.5 Cone

Consider the region bounded by the cone z?/a® + 4?/b* — 22 = 0 and the planes z = z; and

z = z1 (with z5 < z;). A common parameterization is x(z,60,7) = (arz cosf, brz sinf, z) for

20 < 2 < z1. |0x/0t] = —abrz® and a = —7ab (23 — 23)/3:
23— 23
R =2 = )= -
Fe(0) ’ — 0(1h2) = 2mipy;

T on
Friry=r* = 1(3) = Vi3
B.2.6 Elliptic cylinder

Consider the region bounded by the cylinder x2/a? 4+ y?/b?> = 1 and the planes z = z, and

z = 2z (with 25 < 27). A common parameterization is x(z,0,7) = (ar cos#, brsin6, z) for
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20 < z < 2z1. |0x/0t| = —abr and o = —7wab (21 — 2o):
z— 2
Fp(z) = —— — 2(¥1) = (21 — 20)¥1 + 20;
Z1— 20
g
Fo(0) = o - 0(1p2) = 2miby;

Fp(r)=1* = ()=

B.3 Illustrations of subsection solutions

For the variable geometric specifications for each region, refer to the corresponding parame-
terization of the region. All of the corrected distributions were generated using the solutions

presented in Table 1 with 10° points each.

Table 3: Illustrations of ‘naive’ and corrected distributions over Section 6 subregions

Region and

. . Uniform parameter distribution Corrected distribution
specifications

Continued on next page
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Table 3 — continued from previous page
Regi d . N oy
eglon an Uniform parameter distribution Corrected distribution
specifications
Ellipsoid

Paraboloid

Single-sheet
hyperboloid

m0:~0.5
m1=05
a=1
b=0.75
c=1

Continued on next page
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Table 3 — continued from previous page

Region and

. . Uniform parameter distribution Corrected distribution
specifications

Double-sheet
hyperboloid

my = 1.5
a =
b=0.75
Cc =
Cone
20 = 0
21 = 2
a =
b=0.75
Cylinder
Zo = -1
zZ1 = 1
a=1

b=0.75
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