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Abstract 

This paper explores a branch of astronomy called orbit determination to answer the 

following research question: "Between the Gaussian and the Laplacian method of orbit 

determination, which method calculates the orbit of a near-Earth asteroid more accurately?" 

Initially, I compare and contrast the derivations of the Gaussian and the Laplacian 

method, identifying their strengths and weaknesses. The hypothesis, drawn from the 

derivations, claims that the Gaussian method is more accurate than the Laplacian method 

when the time intervals between the three observations are unequal. To investigate whether 

this hypothesis also holds true for the asteroid (5626) 1991FE, I collect observational data of 

the asteroid's position by taking digital images of the asteroid, processing the images, 

centroiding, and conducting Least Squares Plate Reduction (LSPR). Then, I analyze the data 

with the computer softwares that I create in the VPython programming language, using the 

three observations of the asteroid's position as the input. 

The data analysis leads to the conclusion that the Gaussian method is more accurate 

than the Laplacian method at calculating the orbital elements of the asteroid 1991 FE when 

the time intervals between the observations are unequal, thus confirming the hypothesis. In 

fact, the Gaussian method proves to be more accurate than the Laplacian method even when 

the time intervals between the observations are equal. The shortcomings of the Laplacian 

method are thought to be the repercussions of concentrating in the middle observation, 

truncating the Taylor series expansion of p, and approximating the Earth-Sun mass ratio. 

Both methods of orbit determination have several limitations, such as the light travel 

time correction, the stellar aberration, and the assumption of a two-body problem. Further 

investigation could examine the long-term dynamical behaviors of the asteroid based on the 

calculated orbital elements. 

Word Count: 288 
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1. Introduction 

Orbit determination refers to the estimation and the calculation of orbits of celestial 

objects. The purpose of this paper is to investigate into the Gaussian and the Laplacian 

method of near-Earth asteroid (NEA) orbit determination to identify which method calculates 

the orbit of a near-Earth asteroid more accurately. I formally derive the two methods from the 

fundamental laws of physics and create computer softwares in the VPython programming 

language to model the two methods. Ultimately, I compare and contrast the two methods 

using the observational data collected for the asteroid (5626) 1991FE. 

It is crucial to investigate which method of orbit determination works better in 

distinctive situations because an accurate estimation of orbital elements helps us predict the 

potential paths the NEAs might take. We must keep in mind that there is always the 

possibility that an asteroid might hit the earth and cause a large number of deaths. Therefore, 

I choose target NEA, which is potentially hazardous and poorly measured to date, and once 

this research is done, I intend to submit the observations of 1991FE's position to the Minor 

Planet Center (MPC) in order to make a tangible contribution to the scientific community. 

In section 2, I explain how r and r, which are essential in calculating the orbital 

elements, cannot be determined directly from right ascension, declination, and time, the three 

data obtained through observations. Therefore, in section 4 and 5, I derive the Gaussian and 

the Laplacian method from Newton's law of universal gravitation and Kepler's laws of 

planetary motion. In section 7, I describe how r and r, obtained through the Gaussian and 

the Laplacian method, are transformed from equatorial coordinates to ecliptic coordinates. In 

section 8, I introduce the six orbital elements and demonstrate how they can be obtained via 

r and r. 
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2. From Observations to r, r 

R 

Figure I. Earth-Sun-Asteroid Vectors 

Figure 1 demonstrates the three vectors that connect the Earth, the Sun, and the asteroid. 

Let: 

• R be the vector from the Earth to the Sun (this can obtained via JPL Horizons), 

• r be the vector from the Sun to the asteroid, and 

• p be the vector from the Earth to the asteroid. 

The relationship between these vectors are given by 

r = p- R = PP- R 

f = p- R = pp + PP - R 

¥ = Pr + zpf> + pp - R 

(1) 

(2) 

(3) 

To find the six orbital elements, I need the position and the velocity vector from the Sun to 

the asteroid (r and f). However, the only data collected from the observations are the right 

ascension (a), the declination (o), and the time (t). Looking at Figure 1, notice that the unit 

vector from the Earth to the asteroid (p) is the only quantity that I can calculate directly from 

my observations: 

p =(cos a cos o)f +(sin a coso)} +(sin o)k (4) 

To determine p, r, and their derivatives, I have to resort to the Gaussian or the Laplacian 

method of orbit determination. 
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3. Short Comment on Units 

Let me introduce a new time unit, r, which will make calculations easier later on. 

Kepler's third law, as generalized by Newton, is given by 

47t2 
pz =- a3 

GM 

where Pis the orbital period ofthe object and a is the semi-major axis of the orbit. 

Rearranging, I have: 
3 

2na2 
P=--

.JGMs 

(5) 

(6) 

Since the mass of the asteroid is negligible compared to the mass of the Sun, it is not included 

in equation (6). 

Let k = .JGMs , then 
3 

2na2 
P=-

k 
(7) 

In 1809, Gauss calculated k = 0.01720209895, when a is in Astronomical Units (AU) and Pis 

in Gaussian days (r). For P to be in Gaussian days, the time unit must be converted from t tor: 

r=kt (8) 

The reasoning is as follows: 

The equation of orbital motion gives 

GM5r 
(9) r=---

r3 

Substitute k and note that 
dz~ ~ r 2 r 

(10) -=-k-
dt2 r 3 

Rewrtie this as 

1 d2r r 

k 2 dt2 r3 (11) 

and given dr = kdt (from equation (8)) and dr2 
= k2dt, 

(12) 

Recognize that equation (12) corresponds to equation (9) and that GMs = I when the time 

unit is in Guassian days (r) instead of Julian days (t). 
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4. Gaussian Method of Orbit Determination 

The Gaussian method has its basis in celestial geometry. In figure 2, the three vectors r -1> r0 , 

and r +1 define 3 sectors, B~o B2, and B3. B2 is the combined area ofB1 and B3. 

Figure 2. Gaussian Geometry 

4.1 Initial approximations 

Since the asteroid is part of a Keplerian orbit, it lies on a single plane. Therefore, the vectors 

are linealy dependent and the middle vector can be described as follows: 

where a1, a3 is initally estimated using sectors: 

81 T+1 
a1=-=-

Bz To 

83 T-1 
a3=-=--

Bz To 

Substitute equation (13) into equation (1) to get: 

(13) 

(14) 

(15) 

(16) 

(17) 

Perceive that everything is now written in terms of known quantities except for the vectors 

P-t. p0 , and P+1· These are parametrized as following: 

fp 
p=(1P) 

kp 
(18) 

Note that 1, J, and k are components of p (refer to equation( I)). Thus, equation (17) is three 

equations with the unknown scalars p_1, p0 , and p+l, which can be solved using Cramer's 

rule. Another method is to use vector products on equation (17) to get: 
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(19) 

(20) 

(21) 

Substituting p_1 , p0 , and P+1 in equation (1) yields r_1 , r 0 , and r+l· I can also 

approximate f and obtain the six orbital elements, but these elements will not be accurate, 

which is why I move on to explore the f and g series. 

4.2 The f and g series 

The f and g series are paramount for the Gaussian method because they give better 

estimations of a1 and a3• Remember from section 3 that GMs = 1 when the time unit is in 

Gaussian days (T). 

Expand r(T) in a Taylor series about the middle observation. 

2 d3~ 3 
~( ) ~ -=- ...:.:.. 1: r 0 1: 
rT =r0 +r0T+ r0 -z+CdT3 )6+ ... (22) 

Newton's Law of Universal Gravitation states: 

(23) 

Differentiate this with respect to time: 

(24) 

(25) 

Substitute equations (23) and (25) into (22), collect like terms, and eliminate terms higher 

than the third order to get: 
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or 

where 

2 3 
3 r;:- .....:... 

~ T t ~_ro. ro) ~ T _:_. 
r(T) = [1 - - 3 + 5 ] r 0 + [T - - 3 ] r0 

2~ 2~ 6~ 

r(T) = f(T)ro + g(T)r.o 

1:3 

g(t)=t--3 
6r0 

Now we plug the f and g series into equation (27) for the 1st and 3rd observations: 

Multiply equation (30) by g+1 and equation (31) by g_1 , subtract one equation from 

another, and rearrange to get: 

Notice that this is equation (13). Therefore, 

Next, to find r~, we rearrange equation (30) and (31) to yield: 

---

Average the two r~ vectors to obtain a better approximation. 
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(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 
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5. Laplacian Method of Orbit Determination 

Unlike the Gaussian method, which is based on the celestial geometry of sectors and arcs, the 

Laplacian method is focused on the mathematical manipulations ofNewton and Kepler's 

laws. 

5.1 Determination of p, fi, and p for Laplacian method 

In the Laplacian method, r and F are determined via p, p, and p. 

To obtain p and p, p is expanded in a Taylor series aboout the middle observation: 

( ) 
. .. (L1 - to) 2 

P-1 - Po = p(L1 - to)+ P 2 + ··· (37) 

(~ ~ ) ;.. ~ (t+l - to)z 
P+l - P0 = p(t+l - to)+ P 2 + ··· (38) 

Drop the terms higher than dt2 and solve simultaneously for p and p to obtain: 

;.. (t+l - to) 2 (P-1 - P0 ) - (Lt - to) 2 (P+t - Po) 
p= 

(t+1 - t0)(L1 - t 0 )(t+1 - L 1) 

p = _
2

[(t+1- to)(P_1 - P0)- CL1- to)(p+l- P0)] 

(t+l- to)(Lt- to)(t+l- Lt) 

5.2 Finding rand p 

Use equation (1) to re-write the Netwon's Law of Universal Gravitation: 

:.: GMsr GMs(P- R) 
r = --- = ----::---

r3 r3 

-=.:. G(Ms + ME)R 
R=- R3 

where Ms is the mass of the Sun and ME is the mass ofthe Earth. 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

The mass of the asteroid is not included in equation (43) because it is negligible compared to 

the mass ofthe Sun. 

Susbtitute equations (43) and (44) into equation (3) to get 

GMs(i5- R) ··~ 
2

.;.. ~ G(Ms + ME)R 
- r3 = pp + pp + pp + R3 (45) 

And isolate R and p on opposite sides of the equation to yield 
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G(
Ms Ms+ME )~R ··~ 

2
.;.. :.- GMs~ - - = pp + pp + pp + - p . r3 R3 r3 

(46) 

This equation can be simplified by taking the dot product of both sides with (pxp) and (pxp). 

[pxp·R]G( Ms - Ms +ME ) = p[pxp·p] (47) 
r3 R3 

.. ~ Ms Ms +ME .. · 
[pxp]· R]G(- - ) = 2p[pxp·p] 

r3 R3 

Rearrange equation ( 4 7) to obtain 

Ms Ms + ME p x p · R 
P = G(3- R3 )L ;.. J 

r pXp·p 

1 
1 . ~ 

1 + 328900.5 P X P . R 
= Cr3 - R3 ) L ;.. J p X p. p 

Dot product of the equation (1) with itself gives: 

Rearranging, we get 

To solve equations (50) and (52), iterate as follows: 

I. Make a reasonable initial guess for r, for example r = 2. AU 

2. Calculate p from this r using equation (50). 

3. Calculate a new r from this p using equation (52). 

4. Repeat steps 2 and 3 until convergence. 

After convergence, obtain p using equation ( 48) 

. G Ms Ms + ME p x p] · R 
p=-z-C~- R3 )[pxp·p] 

1 1 1 + 328~00.5 p X p] . R 
= --2 (r3 - R3 ) [ ~ ;.. :.- ] p X p. p 

Finally from equation (1) and (2) 

r = p - R = rr - R , 

r = f5 - R = rr + ri3 - R , 
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6. Brief Evaluation of the Gaussian and the Laplacian Method 

The use of equations (30), (31 ), and (32) in the Gaussian method makes sure that the 

observation intervals do not have to be equal because the equations incorporate the different 

time intervals by using the f and g series for 1st and 3rd observations. Another advantage of 

the Gaussian method is that the mass ratio of Earth to Sun is not required, as it is in the 

Laplacian method (refer to equation (54)). 

Meanwhile, the Laplacian method concentrates on the middle observation and 

reduces the significance of the other two observations, thus rendering it susceptible to failure 

when the middle observation is poor or when the time intervals are unequal. In addition, since 

the equations (39) and ( 40) truncate with the second derivative, the next few terms have to be 

small, or else the method fails. Hence, if the observational intervals are unequal, the third 

term would be large, and thus the method is likely to fail. 

7. Rotation from Equatorial to Ecliptic Coordinates 

It is common for orbital elements in the solar system to be given in ecliptic 

coordinates, in which the Sun is at the origin and the x, y plane corresponds with the ecliptic 

plane. However, the asteroid position is given in equatorial coordinates (RA and Dec), and 

therefore r and r must be rotated into the ecliptic coordinate before calculating the orbital 

elements. 

The following rotation matrix is used to rotate r and r from equatorial to ecliptic 

coordinates: 

0 
cos c. 

-sine. 
si~c.) 
COSe 

The ecliptic tilt c. =: 23.4376600557 is the inclination of the ecliptic relative to the celestial 

equator. 
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8. Description of Orbital Elements 

Vernal Equinox 

Figure 3. Orbital Elements [tJ 

NEAs follow an elliptical orbit about the Sun that can be characterized by six orbital 

elements: 

Semi-major axis (a) 

2 2 

NEAs follow an elliptical orbit, satisfying the equation :
2 

+ ~2 = l. The semi-major axis is 

half the distance between the perihelion and the aphelion, thus defining the size of the orbit. 

1 a=...,---
[!.- f.f J 
r 

Eccentricity (e) 

The eccentricity defines the shape of the orbit, and it can be expressed as e = e = J 1 - :: 

ForNEAs, 0 S e S 1 because a> b > 0. 

h = r x r 

~ e=--JJ.--; 
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Inclination (i) 

The inclination is the angle between the orbit plane and the ecliptic plane, in which the Earth 

orbits. Hence, the inclination defines the orientation of the orbit with respect to the Earth's 

equator. 

Jh~+ h~ 
i = arctan ( hz ) 

Longitude of the Ascending Node (.Q) 

The longitude of the ascending node is the angle between the Vernal Equinox and the 

ascending node. It defines the location of the ascending and the descending orbit with respect 

to the Earth's equatorial plane . 

.Q =arcsin (hh:' .) 
Slni 

Argument of Perihelion ( ro) 

hy 
.Q = arccos (- -.-.) 

hsm1 

The argument of perihelion is the angle measured from the ascending node to the object's 

perihelion point. 

f = Xl + Yl + zk 

U (-xc_o_sn_+..::y_sJ_·nn_ 
=arccos -J 

r 

U = arcsin(~) 
rsm1 

co=U-v 

Mean anomaly (M) 

True anomaly (v) 

a(l-e2)-r 
v =arccos( ) 

er 

The mean anomaly is the angle measured from the perihelion point to the object's position, 

assuming unifrom motion. It determines the object's current position along its orbit. 

Eccentric anomaly (E) 

a-r 
E = arccos(-) 

ae 

There is no ambiguity in the quadrant of E, since 0° ::::; E ::::; 180° when 0° ::::; v ::::; 180°. 

M =E-e sinE 
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9. Observational Data 

Over a period of a month in summer 2012, I took digital images of the asteroid (5626) 

1991 FE using three telescopes: Hut Observatory, 14" Meade, and 16" Prompt 2. More 

information on each telescope is provided in Appendix I. 

Before each observation, I generated the ephemerides using JPL Horizons and 

created the star chart using TheSkyX, in order to approximate the position of the asteroid, to 

determine its transit time, and to decide with which stars to sync the telescope. Most of the 

time, I took three series of seven images of two minute exposures. This was to prevent the 

asteroid from streaking, while assuring its visibility. 

Once the raw images were taken from the CCD, I created the calibrated images by 

removing gain and bias. This involved reducing, aligning, and combining the images using 

CCDSoft. After finding the asteroid by blinking the images, I did astrometry using CCDSoft 

and TheSkyX to determine the right ascension and declination of the asteroid. I also had to 

determine the middle time of observation by looking at the FITS header info of the images. 

Following are the data obtained through observations: 

Table 1. Time, Right Ascension, and Declination of (5626) 1991 FE on Five Observations 

Time Right Ascension Declination 
Observation 

(± 0.01s) (±O.Ols) (± 0.01") 

19 June 2012 
1 18h 19m 38.98s -16° 59' 50.81" 

06h 08m 29.877s UT 

2 
10July2012 

17h 53m 0.69s -17° 8' 15.64" 
09h 12m 39s UT 

3 
14 July 2012 

17h 48m 23.58s -17° 11' 41.33" 
07h 37m 54s UT 

4 
18 July 2012 

17h 44m 09.12s -17° 15' 42.75" 
04h 03m 55s UT 

5 
22 July 2012 

17h 40m 08.02s -17° 20' 36.55" 
03h 36m 25s UT 

15 



10. VPython codes 

After collecting the observational data, I wrote my own computer software in the 

VPython programming language for the Gaussian and the Laplacian method of orbit 

determination. The input files include the time, the right ascension (RA), the declination 

(Dec), and the Earth-Sun vector (R) for three observations. Appendix 2 and Appendix 3 are 

the VPython codes that calculate r and r through the Gaussian and the Laplacian method, 

respectively, and use those vectors to determine the six orbital elements. 

Before using the two VPython codes to analyze the data, I first test the validity of the 

algorithms through test files generated with JPL Horizons. For the test input file and result, 

refer to Appendix 4. Following is the analysis of the test file, comparing the orbital elements 

generated by my programs and those published on JPL Horizons: 

Table 2. Evaluating the Gaussian and the Laplacian VPython Codes through Test File 

Percent Error* I % 

Orbital Elements (± 1 X 10-S) 

Gaussian Method** Laplacian Method** 

Semi-major axis (a) 0.70270627 1.9027919 

Eccentricity (e) 1.5457482 1.3527382 

Inclination (i) 0.21054808 0.13252035 

Longitude of the ascending node (.Q) 0.12230530 0.22581141 

Argument of the perihelion (w) 0.15455159 0.91301850 

Mean anomaly (M) 0.54082963 0.53577797 

* o/ (calculated value- known value) * 
/o error = k 

1 
1 00% nown va ue 

** Confident to 8 significant figures because of RA and Dec 

Keeping in mind that the data published on JPL Horizons for ( 5626) 1991 FE are not 

very accurate due to the lack of data and taking into account the small percentage errors that 

are all less than 2%, I can safely conclude that my programs are working and viable as tools 

for analysis of the real data collected. 
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11. Data Analysis 

In section 11, I will analyze the suitability of the Gaussian and the Laplacian method 

with respect to the distribution of the observations. In other words, I will examine whether 

the Gaussian or the Laplacian method is affected when the observation intervals are unequal. 

Different combinations of the five observational data will be used as inputs for the programs 

that I have created. Once the orbital elements have been obtained using the software, they 

will be compared with those published by JPL Horizons. The comparison of the percentage 

errors of the six orbital elements will indicate which method is more accurate. 

The combinations that will be analyzed are: 

Unequal intervals Equal intervals 

• Observations 1, 2, and 5 • Observations 2, 3, and 4 

• Observations 1, 2, and 4 • Observations 3, 4, and 5 

• Observations 1, 2, and 3 

• Observations 1, 3, and 5 

• Observations 1, 3, and 4 

Sample orbital elements have been obtained using observations 1, 2, and 5. Table 3 

presents the orbital elements obtained via the Gaussian and the Laplacian method, and Table 

4 presents their respective percent errors compared to the values published on JPL Horizons. 

Table 3. Orbital Elements of Observations 1, 2, and 5 

Orbital Element JPL Horizons Gaussian Method* Laplacian Method* 

Semi-major axis (a) 2.195255848576980AU 2.1732156 3.4190337 

Eccentricity (e) 0.4543064682717765 0.45132687 0.63575571 

Inclination (i) 3.854139495825758° 3.8568536 4.2372584 

Longitude of the 
173.2889321893739° 173.79201 161.73502 

ascending node (.0) 

Argument of the 
231.4186146804029° 232.56428 222.19316 

perihelion (w) 

Mean anomaly (M) 282.2478103012744° 279.50150 327.46415 

* Confident to 8 stgmficant figures because of RA and Dec 
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Table 4. Percent Errors of Orbital Elements of Observations 1, 2, and 5 

Percent Error % 

Orbital Elements (± 1x10-8)* 

Gaussian Method* Laplacian Method* 

Semi-major axis (a) 1.0039931 55.746480 

Eccentricity (e) 0.65585598 39.939833 

Inclination (i) 0.070419298 9.9404523 

Longitude of the ascending node (Q) 0.29031333 6.6674271 

Argument of the perihelion (w) 0.49506221 3.9864787 

Mean anomaly (M) 0.97301391 16.020085 

* Confident to 8 s1gmficant figures because of RA and Dec 

From Table 4, notice that the Guassian method is significantly more accurate than the 

Laplacian method for the observations 1, 2, and 5. For example, the percent error of the semi­

major axis calculated through the Gaussian method is approximately 1%, while that 

calculated through the Laplacian method is approximately 56%. A key aspect to notice is the 

unequal time interval between the three observations. The time interval between observation 

1 and 2 is 21 days and the time interval between observation 2 and 5 is 12 days, so the overall 

difference between the time intervals is 9 days (21- 12 = 9). The 9 day difference in the time 

intervals seems to be the reason behind the failure of the Laplacian method. This is also 

corroborated by the mathematics and physics behind the derivation of the Laplacian method. 

As explored in section 6, the concentration in the middle observation and the truncation of the 

Taylor series expanision leave the Laplacian method susceptible to failure when the time 

intervals are unequal. To verify this phenomena and check the validity of my conjecture, I 

have analyzed the five combinations of observations with unequal intervals and I have 

attempted to find patterns that are applicable to a general situation. The results for these 

combinations are reported in Appendix 5. 

The main trend noticed from the analysis of data is that the Laplacian method, unlike 

the Gaussian method, is greatly influenced by the distribution of the observations. The 
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Laplacian method becomes increasingly more inaccurate when the difference between the 

time intervals increases. This discovery is summarized in the following table: 

Table 5. Correlation between time intervals and accuracy of Laplacian method 

Percent Error 

I st Interval I day 2nd Interval I day 
Difference between 

Observations Time Intervals I day 
of Semi-major 

(± 0.5)* (± 0.5)* Axis 1% 
(± 1)** 

(±I) 

I, 2, 5 21 12 9 56 

I, 2, 4 21 8 13 93 

1, 2, 3 2I 4 I7 I60 

I, 3, 5 25 8 17 224 

1, 3, 4 25 4 21 580 

*There is uncertainty because observations were not taken at the same time each day. 

**Addition of the uncertainties of the two intervals 

Meanwhile, when the time intervals are equal, as is the case with observations 3, 4, 

and 5 and observations 2, 3, and 4, the Laplcian method appears much more stable and useful. 

In fact, the Laplacian method is more accurate than the Gaussian method when it comes to 

observations 3, 4, and 5, although the Gausian method is once again significantly better than 

the Laplacian method for observations 2, 3, and 4. I was not able to find an appropriate 

explanation for such phenomena through this research paper. More data of equal intervals are 

necessary. 
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12. Conclusion and Evaluation 

This research paper investigates into the Gaussian and the Laplacian method of orbit 

determination for the near-Earth asteroid, (5626) 1991 FE, using three observations of its 

position. Since only three observations are used as the input, the orbital elements calculated 

through the computer programs are only approximate. However, depending on the method 

and the observations, surprisingly good results can be obtained. 

The Gaussian method of orbit detern1ination is generally better than the Laplacian 

method. Referring to the percent errors of the orbital elements calculated via computer 

softwares, we realize that those of the Gaussian method is all less than 3%, except for the 

anomalous observations 3, 4, and 5. Meanwhile, the Laplacian method is significantly worse 

than the Gaussian method, especially when the time intervals are unequal. However, the 

Laplacian method did prove to be more effective when the time intervals are equal. 

Overall, the quality of the observations and of the VPython codes of the Gaussian and 

the Laplacian method suffices to serve the purpose of analyzing the data and contrasting the 

two methods. Nonetheless, there is still plenty of room for improvement. For example, the 

inclusion of a fourth observation in the input could improve the orbital elements. 

One of the major limitations concerns the travel time of light. The observed positions 

of the asteroid were not the positions that they occupied at the instant they were observed. 

When travel time of light is taken into account, the asteroid actually occupies the observed 

positions at times t.1 - p.1/c, to- p 0/c and t+ 1- P+dc. This correction makes a negligible 

difference in the value of p but the orbital elements will change more significantly. 

Another major limitation concerns the stellar aberration. Stars appear to be shifted a 

little ahead of their true position due to the "motion of Earth in its orbit around the sun" and 

the "finite speed of light" [ZJ. That aberration is the same for stars and far away asteroids that 

do not move very fast relative to the Earth. However, that is not true for near-Earth asteroids. 
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For example, an asteroid in opposition that moves in the same direction and speed as the 

Earth will appear to be trailing the stars by up to 20". Therefore, I must find the tangential 

part of the relative velocity of Earth and the asteroid and compare my stellar aberration of a 

star in that position and my asteroid to find the correction in RA and Dec. Then, I must apply 

these new star RAs and Decs to the Least Squares Plate Reduction (LSPR) program and 

obtain new RAs and Decs for all three asteroid positions and reinsert them into my orbit 

determination program to get better orbital elements. 

Last but not least, the two methods make the assumption of a two-body problem, but 

the orbit of a near-Emih asteroid is evidently anN-body problem. Near-Earth asteroids, such 

as the (5626) 1991FE for which I have collected digital images, follow an elliptical orbit 

about the Sun that can be characterized by the six orbital elements: semi-major axis (a), 

eccentricity (e), inclination (i), longitude of the ascending node (0), argument of perihelion 

(co), and mean anomaly (M). However, this two-body approximation works if there are only 

two bodies in the system, the Sun and the asteroid. Fortunately, the two-body approximation 

works decently well for short periods of time because the Sun is 100 times more massive than 

anything else in the solar system. The two-body approximation fails over long timescales or 

if there are close approaches with a planet. As further investigation, I could use a numerical 

integration program called Swift to examine the long-tem1 dynamical behaviours of the 

asteroid over the next 50 million years. 
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Appendix 1. Telescope Vital Stats 

14" Meade 

aperture= 356mm 

focal length= 3556mm 

SBIG STL-1301E CCD camera 

l280x1024 pixel array 

pixel size = 16 microns 

plate scale = 0.928"/pix 

field of view = 20' x 16' 

HUT Observatory 

16" Prompt 2 

aperture = 407mm 

focal length= 4536mm 

ALTA U47+ camera 

3073x2048 pixel array 

pixel size = 9 microns 

plate scale = 0.41 "/pix 

field of view= 21' x 14' 

Apogee CCD model Alta U47, back-illuminated 1024x1024 

13-micron pixels 

16-inch f/8 reflector 

All exposures binned 2x2 

CCD temp = -30 degrees 

filter = Cousins R 

Some high haze. 

Exposures 2-minutes 
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Appendix 2. Gaussian Method VPython Codes 

Code: GassuianOrbitDetermination.py 

# Gaussian Orbit Determination 
# Written August 4, 2012 

from math import * 
from numpy import * 
from visual import * 

debug = True 
iteration = False 

# Import data file 
if debug == True: 

filename "JPL2.txt" 
else: 

filename raw_input("Enter name of data file:") 

################################################## 
################################################## 

# Define functions 

# Convert (RA) hours, minutes, and seconds to radians 
def hms2Rad(hms): 

if hms[O]>=O: #positive RA 
return radians((hms[O] + hms[1]/60. + hms[2]/3600.)*360./24.) 

else: #negative RA 
return radians((hms[O] + hms[1]/60. + hms[2]/3600.)*360./24.) 

# Convert (Dec) degrees, arcminutes, and arcseconds to radians 
def dms2Rad(dms): 

if dms[O]>=O: #positive Dec 
return radians(dms[O] + dms[1]/60. + dms[2]/3600.) 

else: #negative Dec 
return radians(dms[O] - dms[1]/60. - dms[2]/3600.) 

# Convert UT to JD 
def UT2JD(dmyhms): #day,month,year,hour,minute,second 

decimalTime = float(dmyhms[3]+(dmyhms[4]/60.)+(dmyhms[5]/3600.)) 
Jnaught = 367*dmyhms[2] - int(7*(dmyhms[2]+int((dmyhms[1]+9)/12))/4) + 

int(275*dmyhms[1]/9) + dmyhms[O] + 1721013.5 
return Jnaught+(decimalTime/24.) 

# Check ambiguity by comparing values obtained through sine and cosine 
def ambiguity_check(A,B,C,D): 

if round(A*1e6)==round(C*1e6): 
return A 

elif round(B*1e6)==round(C*1e6): 
return B 

elif round(A*1e6)==round(D*1e6): 
return A 

elif round(B*1e6)==round(D*1e6): 
return B 

# Calculate rho unit vector 
def rho_hat(ra,dec): 

rho_hat = vector(cos(ra)*cos(dec),sin(ra)*cos(dec),sin(dec)) 
return rho hat 
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# f series 
def fseries(tau,r,rdot): 

f = 1 - tau**2./(2*mag(r)**3) 
f += (tau**3.)*dot(r,rdot)/(2* mag(r)**5.) 
f += (tau**4./24.)*((3./mag(r)**3.)*(dot(rdot,rdot)/mag(r)**2. -

1./mag(r)**3.) - (15./mag(r)**2.)*dot(rdot,rdot)**2. + (1./mag(r)**6.)) 
return f 

# g series 
def gseries(tau,r,rdot): 

g =tau- (tau**3.)/(6* mag(r)**3.) 
g += tau**4.*dot(rdot,rdot)/(4.*mag(r)**5.) 
return g 

################################################## 
##############11################################### 

# Constants 
mu = 1 
k = 0.01720209895 #Boltzmann constant 
c = 173.1446 #speed of light (AU/day) 
epsilon= radians(23.4376600557) #ecliptic tilt 

################################################## 
##11############################################### 

# Extract data from file 
data= loadtxt(filename,delimiter=', ') 

t1 = UT2JD(data[0]) 
ra1 = hms2Rad(data[l] [0:3]) 
decl = dms2Rad(data[1] [3:]) 
Rl = vector(data[2] [0:3]) 
R_dotl = vector(data[2] [3:]) 

t2 = UT2JD(data[3]) 
ra2 = hms2Rad(data[4] [0:3]) 
dec2 = dms2Rad(data[4] [3:]) 
R2 = vector(data[5] [0:3]) 
R_dot2 = vector(data[5] [3:]) 

t3 = UT2JD(data[6]) 
ra3 = hms2Rad(data[7] [0:3]) 
dec3 = dms2Rad(data[7] [3:]) 
R3 = vector(data[S] [0:3]) 
R_dot3 = vector(data[S] [3:]) 

# Define Earth-Sun vectors 

R = array([R2,R3,Rl]) 
R_dot = array([R_dot2,R_dot3,R_dotl]) 

################################################## 
################################################## 

# rho unit vector 
rho hatl rho_hat(ral,decl) 
rho hat2 = rho_hat(ra2,dec2) 
rho hat3 = rho_hat(ra3,dec3) 
rho hat array([rho_hat2,rho_hat3,rho hatl]) 
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# tau 
tau= k * array([t3-t1,t3-t2,tl-t2)) 

# Estimate a1 and a3 using sectors 
a1 tau[1)1tau[0) 
a3 = -tau[-1Jitau[O) 

# rho magnitude 
rho_mag1 = ( a1*dot(cross(R[-1),rho_hat[O)),rho hat[1)) -
dot(cross(R[O),rho hat[O]),rho hat[1)) + 
a3*dot(cross(R[1),rho_hat[O]),rho_hat[1)) ) I ( a1*dot(cross(rho_hat[-
1),rho_hat[O)),rho_hat[1)) ) 
rho_mag2 =· ( a1*dot(cross(rho_hat[-1),R[-1)),rho_hat[1)) -
dot(cross(rho_hat[-1],R[O)),rho_hat[1)) + a3*dot(cross(rho_hat[-
1],R[l]),rho_hat[1]) ) I ( -dot(cross(rho_hat[-1],rho_hat[O]),rho_hat[1]) 
rho_mag3 = ( a1*dot(cross(rho_hat[O),R[-1]),rho_hat[-1)) -
dot(cross(rho_hat[O],R[O]),rho_hat[-1]) + 
a3*dot(cross(rho_hat[O],R[1]),rho_hat[-1]) ) I 
( a3*dot(cross(rho_hat[O],rho_hat[1]),rho_hat[-1]) 
rho_mag = array([[rho_mag2], [rho_mag3], [rho_mag1])) 

# rho vector 
rho rho hat * rho_mag 

# r vector 
r = rho - R 

# initial velocity estimate 
r dot= (r[1]-r[-1] )l(tau[1]-tau[-1]) 

print "##############" 
print "Initial Values" 
print "##############" 
print "rho unit vector: ",rho_hat 
print "rho magnitude: ", rho_mag 
print "rho vector: ", rho 
print "r vector: ", r 
print "r dot vector: ", r_dot, '\n' 

fori in range (0,1000): 

# Calculate f&g series 
f fseries(tau,r[O],r_dot) 
g = gseries(tau,r(O],r_dot) 

# New a1, a3 
a 1_ new g [ 1] I ( f [ -1] * g [ 1] - f [ 1] * g [ -1] ) 
a3_new = -g[-1) I ( f[-1]*g[1] - f[1)*g[-1) 

# rho magnitude 
rho_mag1 = ( (a1_new*dot(cross(R[-1],rho hat[O)) ,rho hat[1)) )­

dot(cross(R[O],rho_hat[O]),rho_hat[1))+a3_new*dot(cross(R[1],rho_hat[O]),rh 
o_hat[1)))1 (a1_new*dot(cross(rho_hat[-1],rho_hat[O]),rho_hat[1])) 

rho_mag2 = ((a1_new*dot(cross(rho_hat[-1],R[-1)),rho_hat[1]))-
dot(cross(rho hat[-1],R[O]),rho hat[1])+a3 new*dot(cross(rho hat[-
1],R[1)),rho_hat[1] )) I (-dot(cross(rho_hat[-1],rho_hat[OJ),rho_hat[1])) 

rho_mag3 = ((a1_new*dot(cross(rho_hat[O),R[-1)),rho_hat[-1)))­
dot(cross(rho hat[O],R[O)),rho hat[-
1])+a3_new*dot(cross(rho_hat[OJ,R[1]),rho_hat(-1])) I 
(a3_new*dot(cross(rho_hat[O],rho_hat[1) ),rho_hat[-1])) 

25 



rho_mag = array([[rho_mag2], [rho_mag3], [rho_mag1]]) 

# rho vector 
rho rho hat * rho_mag 

# r vector 
r = rho - R 

# r vector dot 
r_dot1 = (r[1] - f[1]*r[0]) I g[1] 
r_dot2 = (r[-1] - f[-1]*r[0]) I g[-1] 
r_dot = (r_dot1 + r_dot2) I 2 

# Loop end condition 
if abs(a1-a1_new)<1e-12 and abs(a3-a3_new)<1e-12: 

print "loop broken at iteration ", i, '\n' 
break 

a1 a1 new 
a3 a3 new 

if iteration: 
print "###################################" 
print " ITERATION",i 
print "###################################" 
print "f: ", f 
print "g; II 1 g I I \n I 
print "a1, a3: ",a1_new,a3_new,'\n' 
print "r vector: ",r 
print "r dot vector: ", r_dot, '\n' 

print "############" 
print "Final Values" 
print "############" 
print "f: ", f 
print "g: ", g, '\n' 
print "equatorial r vector: ", r 
print "equatorial r dot vector: ", r_dot, '\n' 

################################################## 
################################################## 

r = vector(r[O]) 
# Rotate r vector to ecliptic coordinates 
r = vector(r.x, r.y*cos(epsilon)+r.z*sin(epsilon), -
r.y*sin(epsilon)+r.z*cos(epsilon)) 
print "ecliptic r vector: ", r 

r dot= vector(r dot) 
#-Rotate r vector dot to ecliptic coordinates 
r_dot = vector(r_dot.x, r_dot.y*cos(epsilon)+r_dot.z*sin(epsilon), -
r dot.y*sin(epsilon)+r dot.z*cos(epsilon)) 
print "ecliptic r dot :;;ector: ", r_dot, '\n' 

################################################## 
################################################## 

# Calculate Orbital Elements 

# Semi-major axis (a) 
a= 11(21mag(r) - dot(r_dot,r dot)) 
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print "Semi-major axis (a): ", a 

# Eccentricity (e) 
h = cross(r, r_dot) #angular momentum per unit mass 
e = sqrt(1- mag(h)**2/(mu*a)) 
print "Eccentricity (e): ", e 

# Inclination (i) 
i = atan(sqrt((h.x**2 + h.y**2))/h.z) 
print "Inclination (i): ", degrees(i) 

# Longitude of the ascending node (0) 
01 asin(h.x/(mag(h)*sin(i))) 
02 pi - 01 
03 acos(-h.y/(mag(h)*sin(i))) 
04 2*pi - 03 
0 = ambiguity_check(01%(2*pi),02%(2*pi),03%(2*pi),04%(2*pi)) 
print "Longitude of the ascending node (0)", degrees(O) 

# True anomaly (v) 
vl acos((a-a*(e**2)-mag(r))/(e*mag(r))) 
v2 2*pi - v1 
v3 asin((a*(l-e**2)*(dot(r,r_dot))) I (e*mag(h)*mag(r)) 
v4 pi - v3 
v = ambiguity_check(vl%(2*pi),v2%(2*pi),v3%(2*pi),v4%(2*pi)) 

# Argument of perihelion (w) 
Ul acos((r.x*cos(O)+r.y*sin(O) )/mag(r)) 
U2 2*pi - Ul 
U3 asin(r.z/(mag(r)*sin(i))) 
U4 pi - U3 
U ambiguity_check(Ul%(2*pi),U2%(2*pi),U3%(2*pi),U4%(2*pi)) 

w (U- v)%(2*pi) 
print "Argument of Perihelion (w): ", degrees(w) 

# Eccentric anomaly (E) 
E = acos((a-mag(r))/(a*e)) 
if v>=pi: 

E = 2*pi - E 

# Mean anomaly (M) 
M = E - e*sin(E) 
print "Mean anomaly (M): ", degrees(M) 
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Appendix 3. Laplacian Method VPython Codes 

Code: LaplacianOrbitDetermination.py 

# Laplacian Orbit Determination 
# Written August 5, 2012 

from math import * 
from numpy import * 
from visual import * 

debug = True 
iteration = False 

# Import data file 
if debug == True: 

filename "JPL2.txt" 
else: 

filename raw_input("Enter name of data file:") 

################################################## 
################################################## 

# Define functions 

# Convert (RA) hours, minutes, and seconds to radians 
def hms2Rad(hms): 

if hms[O]>=O: #positive RA 
return radians{(hms[O] + hms[l]/60. + hms[2]/3600.)*360./24.) 

else: #negative RA 
return radians((hms[O] + hms[l]/60. + hms[2]/3600.)*360./24.) 

# Convert (Dec) degrees, arcminutes, and arcseconds to radians 
def dms2Rad(dms): 

if dms[O]>=O: #positive Dec 
return radians(dms(O] + dms[l]/60. + dms[2]/3600.) 

else: #negative Dec 
return radians(dms[O] - dms[l]/60. - dms[2]/3600.) 

# Convert UT to JD 
def UT2JD(dmyhms): #day,month,year,hour,minute,second 

decimalTime = float(dmyhms[3]+(dmyhms[4]/60.)+(dmyhms[5]/3600.)) 
Jnaught = 367*dmyhms[2] - int(7*(dmyhms[2]+int((dmyhms[1]+9)/12))/4) 
Jnaught += int(275*dmyhms[l]/9) + dmyhms[O] + 1721013.5 
return Jnaught + (decimalTime/24.) 

# Check ambiguity by comparing values obtained through sine and cosine 
def ambiguity_check(A,B,C,D): 

if round(A*le6)==round(C*le6): 
return A 

elif round(B*le6)==round(C*le6): 
return B 

elif round(A*le6)==round(D*le6): 
return A 

elif round(B*le6)==round(D*le6): 
return B 

# Calculate rho unit vector 
def rho_hat(ra,dec): 

rho_hat = vector(cos(ra)*cos(dec),sin(ra)*cos(dec),sin(dec)) 
return rho hat 
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################################################## 
################################################## 

# Constants 
mu = 1 
k = 0.01720209895 #Boltzmann constant 
c = 173.1446 #speed of light (AU/day) 
eps = radians(23.4376600557) #ecliptic tilt (epsilon) 

################################################## 
################################################## 

# Extract data from file 
data= loadtxt(filename,delimiter=', ') 

t1 = UT2JD(data[O]) 
ra1 = hms2Rad(data[1] [0:3)) 
dec1 = dms2Rad(data[1) [3:)) 
R1 = vector(data[2) [0:3)) 
Rdot1 = vector(data[2) [3:)) 

t2 = UT2JD(data[3]) 
ra2 = hms2Rad(data[4) [0:3]) 
dec2 = dms2Rad(data[4) [3:)) 
R2 = vector (data [ 5) [ 0 : 3) ) 
Rdot2 = vector(data[5] [3:)) 

t3 = UT2JD(data[6]) 
ra3 = hms2Rad(data[7) [0:3)) 
dec3 = dms2Rad(data[7) [3:)) 
R3 = vector(data[8] [0:3]) 
Rdot3 = vector(data[8] [3:]) 

# Define Earth-Sun vectors 

R = R2 #R[-1] and R[1] are not used in the Laplacian method 
Rdot = Rdot2 #Rdot[-1] and Rdot[1] are not used in the Laplacian method 

################################################## 
################################################## 

# rho unit vector 
rho hat1 rho_hat(ra1,dec1) 
rho hat2 = rho_hat(ra2,dec2) 
rho hat3 = rho_hat(ra3,dec3) 
rho hat array([rho_hat2,rho_hat3,rho hat1]) 

# tau 
tau= k * array([t3-t1,t3-t2,t1-t2]) 

# denominator for rho hat dot and rho hat double dot 
denom = tau[-1]*tau[1]*tau[O] 

# rho hat dot 
rho_hat_dot = (tau[1]**2.*(rho_hat[-1]-rho_hat[0]) -tau[-
1]**2.*(rho_hat[1]-rho_hat[0]))/denom 

# rho hat dot dot 
rho_hat_dot_dot = -2.*(tau[1]*(rho_hat[-1]-rho hat[O]) -tau[-
1)*(rho_hat[1]-rho_hat[O]))/denom 
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# initial guess: r magnitude 
r_mag = 2.5 

print "###############" 
print "Initial Values" 
print "###############" 
print "rho unit vector: ", rho_hat[O] 
print "rho hat dot vector: ", rho hat dot 
print "rho hat dot dot vector: ", rho hat dot dot 

fori in range (0,1000): 

# rho magnitude 
A= dot(cross(rho_hat[O],rho hat dot),R)Idot(cross(rho hat[O], 
rho_hat_dot),rho_hat_dot_dot) 
B = (1. + 11328900.5) I (mag(R)**3.) *A 
rho_mag = ( A I r_mag**3. ) - B 

# rho vector 
rho rho_mag * rho_hat[O] 

# r magnitude 
r_mag_new = sqrt( rho_mag**2. + mag(R)**2. - 2.*dot(R,rho) ) 

# Loop end condition 
if abs(r_mag- r_mag_new)<1e-12: 

print "loop broken at iteration ", i, '\n' 
break 

r_mag = r_mag new 

if iteration: 
print "##################################" 
print " ITERATION", i 
print "##################################" 
print "rho magnitude: ", rho_mag 
print "r magnitude: ", r_mag, '\n' 

# rho dot magnitude 
A= dot(cross(rho_hat[O],rho_hat dot dot),R)Idot(cross(rho hat[O], 
rho_hat_dot),rho_hat_dot_dot) 
B = (1. + 1.1328900.5) I (mag(R)**3.) *A 
rho_mag_dot = (-1.12.)*( Al(r_mag**3.) - B 

# r vector 
r = rho - R 

# r vector dot 
rdot = rho_mag_dot*rho hat[O] + rho_mag*rho_hat_dot - Rdotlk 

print "############" 
print "Final Values" 
print "############" 
print "equatorial r vector: ", r 
print "equatorial r dot vector: ", rdot, '\n' 

################################################## 
################################################## 

r = vector(r) 
# Rotate r vector to ecliptic coordinates 
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r = vector(r.x, r.y*cos(eps)+r.z*sin(eps), -r.y*sin(eps)+r.z*cos(eps)) 
print "ecliptic r vector: ", r 

rdot = vector(rdot) 
# Rotate r vector dot to ecliptic coordinates 
rdot = vector(rdot.x, rdot.y*cos(eps)+rdot.z*sin(eps), -
rdot.y*sin(eps)+rdot.z*cos(eps)) 
print "ecliptic r dot vector: ", rdot, '\n' 

################################################## 
################################################## 

# Calculate Orbital Elements 

# Semi-major axis (a) 
a= 1./(2./mag{r) - dot(rdot,rdot)) 
print "Semi-major axis (a): ", a 

# Eccentricity {e) 
h = cross{r, rdot) #angular momentum per unit mass 
e = sqrt(1. - mag{h)**2./(mu*a)) 
print "Eccentricity {e) : ", e 

# Inclination {i) 
i = atan{sqrt{{h.x**2. + h.y**2.))/h.z) 
print "Inclination {i): ", degrees{i) 

# Longitude of the ascending node {0) 
01 asin{h.x/{mag{h)*sin{i))) 
02 pi - 01 
03 acos{-h.y/{mag{h)*sin{i))) 
04 2.*pi - 03 
0 = arnbiguity_check{01%{2*pi),02%{2*pi),03%{2*pi),04%{2*pi)) 
print "Longitude of the ascending node {0)", degrees(O) 

# True anomaly {v) 
v1 acos{{a-a*{e**2)-mag{r))/{e*mag(r))) 
v2 2.*pi - v1 
v3 asin{{a*{1-e**2)*{dot{r,rdot))) I {e*mag{h)*mag{r)) 
v4 pi - v3 
v = arnbiguity_check{v1%{2*pi),v2%{2*pi),v3%{2*pi),v4%(2*pi)) 

# Argument of perihelion {w) 
U1 acos{(r.x*cos{O)+r.y*sin(O))/mag(r)) 
U2 2*pi - 01 
U3 asin{r.z/{mag{r)*sin{i))) 
U4 pi - 03 
U arnbiguity_check{U1%(2*pi),U2%{2*pi),U3%(2*pi),U4%{2*pi)) 

w {U- v)%{2*pi) 
print "Argument of Perihelion {w): ", degrees{w) 

# Eccentric anomaly (E) 
E = acos((a-mag{r))/{a*e)) 
if v>=pi: 

E = 2*pi - E 

# Mean anomaly {M) 
M = E - e*sin(E) 
print "Mean anomaly (M): ", degrees(M) 
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Appendix 4. Test file: input and output 

Input (input.txt) 

05,07,2012,12,00,00 

17, 59, 50.65, -17,04,33.3 

-2.405579733688322E-O 1, 9.063044720766212E-01, 3.929017895577459E-01 

-1.642978546997832E-02, -3.672259697586189E-03, -1.591588140080336E-03 

15,07,2012,12,00,00 

17, 47, 49.47, -17, 13, 01.4 

-4.007751183445531E-01, 8.570377658029277E-01, 3.71541 0404186910E-Ol 

-1.553709953940518E-02, -6.162876952047848E-03, -2.67234 7974923526E-03 

25,07,2012,12,00,00 

17, 37, 51.11, -17,25,42.7 

-5.497531195215302E-01, 7.835851943193904E-01, 3.396968143598786E-01 

-1.418392341277206E-02, -8.490691283011583E-03, -3.680289867519964E-03 

Output 

Table. Orbital Elements of Test File 

Orbital Element JPL Horizons 
Computed with the Computed with the 

Gaussian* Laplacian* 

Semi-major axis (a) 2.195246692884144AU 2.1798206AU 2.2370177AU 

Eccentricity (e) 0.4543080457422227 0.44728559 0.44816245 

Inclination (i) 3.854140588204837° 3.8460258° 3.8592481° 

Longitude of the 
173.2888663178230° 173.50081° 173.68017° 

ascending node (.Q) 

Argument of the 
231.4192149530281° 231.77688° 229.30631° 

perihelion (w) 

Mean anomaly (M) 283.7976363246500° 282.26277° 285.31816° 

* Confident to 8 significant figures because of RA and Dec 
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Appendix 5. Data Comparison 

Table 1. Percent Errors of Orbital Elements of Observations 2, 3, and 4 

Percent Error % 

Orbital Elements (± 1xi0-8
) 

Gaussian Method Laplacian Method 

Semi-major axis (a) 15.104342 11.878890 

Eccentricity (e) 9.2525567 4.7716949 

Inclination (i) 4.6377953 0.16903366 

Longitude of the ascending node (0) 0.74617701 1.3882061 

Argument of the perihelion (w) 7.8926755 4.3814252 

Mean anomaly (M) 9.9148955 6.3750869 

Table 2. Percent Errors of Orbital Elements of Observations 3, 4, and 5 

Percent Error % 

Orbital Elements (± Ix10-8) 

Gaussian Method Laplacian Method 

Semi-major axis (a) 1.5782657 I2.836234 

Eccentricity (e) I .3560714 4.5317739 

Inclination (i) 1.7534327 0.822817I 7 

Longitude of the ascending node (0) 0.44012611 l.I487718 

Argument of the perihelion (w) 2.2306000 5.4966738 

Mean anomaly (M) 1.9831094 7.0585969 

Table 3. Percent Errors of Orbital Elements of Observations 1, 2, and 4 

Percent Error % 

Orbital Elements (± lxi0-8
) 

Gaussian Method Laplacian Method 

Semi-major axis (a) 1.3472246 93.050714 

Eccentricity (e) 0.74685286 58.698204 

Inclination (i) 0.1804601 I 13.802467 

Longitude of the ascending node (0) 0.407100627 8.6586370 

Argument of the perihelion (w) 0.71648700 3.1823321 

Mean anomaly (M) I .3624637 19.750335 
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Table 4. Percent Errors of Orbital Elements of Observations 1, 2, and 3 

Percent Error % 

Orbital Elements (± 1 xi o-8) 

Gaussian Method Laplacian Method 

Semi-major axis (a) 2.1509338 160.23162 

Eccentricity (e) 0.84846868 76.844105 

Inclination (i) 1.0273976 18.050050 

Longitude of the ascending node (0) 0.68867615 10.471505 

Argument of the perihelion (w) 1.7453097 2.214267 

Mean anomaly (M) 2.5735405 22.843811 

Table 5. Percent Errors of Orbital Elements of Observations 1, 3, and 5 

Percent Error % 

Orbital Elements (± I X 10-8) 

Gaussian Method Laplacian Method 

Semi-major axis (a) 0.019336164 224.17408 

Eccentricity (e) 0.77040452 82.799103 

Inclination (i) 0.48102343 15.127051 

Longitude of the ascending node (Q) 0.16731322 9.1737591 

Argument of the perihelion (w) 0.39115698 5.7056734 

Mean anomaly (M) 0.14892134 23.812610 

Table 6. Percent Errors of Orbital Elements of Observations 1, 3, and 4 

Percent Error % 

Orbital Elements (± 1 x10-8) 

Gaussian Method Laplacian Method 

Semi-major axis (a) 0.11402970 579.6710 

Eccentricity (e) 1.6652274 103.17216 

Inclination (i) 0.81099004 19.695824 

Longitude of the ascending node (Q) 0.20602177 11.001659 

Argument of the perihelion (w) 0.64915715 4.5140394 

Mean anomaly (M) 0.22868244 26.011463 
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goal of the program was to successfully image an astemid on rnult.iple nights and to write a computer· code that 

utilized the m·bital mechanics taught dur·ing the day to fully describe the asteroid's orbit about the Sun. 

Between myself and one other teaching faculty at SSP, we oversaw all aspects of this pr·ojccl: lecturing, overseeing 

the Teaching Assistants ('I'As) who wer·e on hand at the telescope every night, pmviding assistance and guidance 

during the data reduction and image analysis stage, and helping, again along with om·TAs, to tmuble-shoot and 

debug students' computer codes. This was a very intensive progmm and, while we expected a good deal of self­
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guidance. 
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Adam Rengstorf 
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