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Abstract

Resonance occurs when a whistle is blown, a Helmholtz resonator is used, or a ball is struck. This
essay investigates how the size of a hole in a spherical cavity affects the resonance frequencies present
(created), as well as how it would affect the different harmonics. o /t{f
Air was blown across different sized holes in a ball with a high velocity. This sound was recorded by a
mic connected to loggerpro. From the recorded data a FFT graph was produced showing the frequencies
present and their respective relative amplitudes. The frequencies present with the highest amplitude for
each hole size was compared to the predicted frequencies produced by the Helmholtz resonance theory,

and the spherical harmonics theory. Z_, o , P

After concluding that Helmholtz resonance was not the correct model for this phenomenon, the peak
frequencies from the FFT graphs of the different size holes were compared with one another and with
those frequencies predicted by spherical harmonics. It was seen that the hole size did not seem to greatly
affect the frequency produced by the ball, although there did seem to be a very slight increase in the
frequencies as the hole diameter increased. Due to the apparent lack of effect the hole size had on the
frequency, the recorded frequencies for select peaks were averaged and compared to the predicted values
from spherical harmonics. The recorded results closely matched the predicted values indicating that

spherical harmonics is probably the correct model, however not all the predicted frequencies were

prominent. Thus the hole size does not greatly affect the frequencies produced due to spherical (-"J al

harmonics, however it could preclude some of the harmonics.
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Introduction:

When wind blows across the top of a chimney there is the potential for a noise to be made. This can be
seen in many other situations with airflow across a narrow opening and gives rise to the expression of
“howling winds.” Humans reproduce these phenomena when blowing on glass bottles or blowing on
whistles. I shall examine how this corresponds to air being blown across a hole drilled in a hollow rigid
plastic ball. This research will investigate how the size of a hole in the spherical cavity affects the Rw 2fa
resonance frequencies present, as well as how it would affect the different harmonics. There are two =

" /important models to note in reference to sound produced by a flow of air. They are Helmholtz resonance,

~ which governs the phenomena of the bottle, and Spherical harmonics, which refers to modes of harmonic

[ 1% resonance of an elastic medium in a spherical cavity. Helmholtz resonance was named after, and

describes the device Hermann von Helmholtz produced to identify particular frequencies out of music and
other complex sounds made from a multitude of frequencies (“Helmholtz Resonato?f’). Spherical
harmonics are very important because they represent the most accurate and precise way to measure the
speed of sound in a gas, as well as the universal gas constant (Russell).
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Helmholtz resonance explains that the sound created by the ball, is caused by resonance of oscillating air.
The air that was blown pushes the air in the hole downwards which can be thought of as a block of air.
Thus the air in the cavity is pressurized, and due to the increase pressure the air in the cavity pushes the
air from the hole back outwards. However, due to the mass of the “block” of air, the air’s momentum
carries it past its original position. This causes lower air pressure inside the cavity than outside the cavity.
Thus the “block™ of air is pulled back into the cavity with the air’s momentum carrying it past the
equilibrium point again. The air is pushed back out again and the oscillations continue, similar to a
spring. The created sound is caused by the oscillations of the air in the neck of the cavity (Wolfe).”

Figure 1 This figure shows the ball with the air in the neck before
being blown and the ball with the air oscillating in the neck. V is
the volume of the ball, P4 is the pressure, x is the distance that the
air moved, m is the mass of the air, S is the cross sectional area of
the neck, p is the density of the air, L is the neck length and finally
p is the change in pressure. (Wolfe) . v
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According to Helmholtz: &
c S [Eq. 1]
. 2n_ |V (h + 15T) (Raii;:hcl)
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Where ¢ is the speed of sound, S is the cross sectional area of the hole, V is the volume of the ball, h is the
wall thickness of the ball, r is the radius of the ball, and f'is the frequency of sound produced. Assuming
that the thickness of the ball is zero the equation can be rewritten as:
; 2 % [Eq. 2]
U 4x% V (1.51)
Since the cross sectional area of the hole can be rewritten in terms of the radius of the hole, this equation
can be simplified to:



-

r V‘;
f2 = — [Eq- 3]
*T5v

Thus from equation 3 it can be seen that if Helmholtz Resonance is the correct model for the studied
phenomenon, the frequency squared is expected to be proportional to the radius of the hole. Thus to test

the validity of the Helmholtz Resonance model for this situation it shall be seen if the frequency squared
is proportional to the radius of the hole as predicted.

The alternate theory being considered is Spherical Harmonics. Spherical harmonics explains the noise as
a standing wave within the instrument. The “white” noise of the air being blown into the hole creates a
standing sound wave inside the cavity with the frequencies present depending on the dimensions of the
cavity. This happens due to the cavity causing most frequencies to destructively interfere, while allowing-
a few to constructively interfere and resonate. w

Analyzing spherical resonators “requires the use of Legendre polynomials and spherical Bessel functions
and necessitates a computational approach to visualize the mode shapes™ (Russell). However, for this

experiment, in order to simplify the calculations, the equations for finding the speed of sound can be used
with a known sound velocity to calculate the frequency. The simplified equation for finding the speed of

sound in a ball if the volume is known and the frequency is found, is: v
[Eq.4]~
T :
For = Zin (ﬁ) (Raichel)

Where f3,, is the frequency, z;,, represents discrete harmonics created by 3 dimensional harmonic shapes,

¢ is the speed of sound, and r is the radius of the spherical cavity. The harmonic recorded is determined
by the vector coordinates, and number of modes in the sphere as can be seen by figure 2.

Figure 2 This figure shows the different shapes
of harmonics made depending on the three
lowest mode indices indicated below the
figures in (n,/ ,m) for a spherical cavity. Each
(taan row represents a different harmonic, and thus
each row has a different frequency. The phase
of the oscillation is indicated by the plus or
minus signs (Russell).

As

From this equation it can be seen that if a hole is in the wall of the ball, its size should not greatly affect
the frequencies produced. However, there is the potential for the positioning of the hole to cause a node
to become an antinode, disrupting the standing wave produced. Thus certain frequencies may not be
produced. Therefore, the effect of the hole on the frequencies produces can help to determine which
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theory correctly models the situation present. The theoretical frequencies predicted by the two models
can be calculated, which may also aid in determining the correct model for this phenomenon.

Set Up:

Figure 3 This photo shows air
being blown across the hole in
the ball, Note that the angle,
the distance from the ball, and
power of the air coming from
the straw should be constant -
for each trial of a certain ball.

Variables

The independent variable is the size of the hole in the ball producing the sound. The dependent variables
are the frequency of the sound created when air is blown across the hole of the ball, as well as the

harmonics produced. The size of the hole will be altered from 5Smm diameter to 13mm diameter by ((p)
drilling into identical balls with different size drill bits. The holes will then be measured with a Vernir “ .H“
caliper after being shaved with a box cutter to ensure that there are no ridges or rough edges around the D ¥
hole. The dependant variables will be measured with a microphone connected to loggerpro. A FFT graph a,”"p \fﬂf_" "
will be produced that shows the frequencies of the sound produced. A \ o W 2 rfr ”
(e 7 2%
Controlled Factors A ‘_3’”* : 2 &y

» The volume of the balls

» Temperature ok . - 3
» Harmonic of the sound with the highest amplitude -
» Neck length <o )}IJ 1Y e
._f\ --.Y'Jiff') ,/ J =
Procedure M\\r‘ /;_._);*Yw‘ x / / ‘.35 (&) ({)
Six identieal rigid plastic balls with a volume of 220ml + 10, a drill, and six drill bits of different u,{' =
diameter were obtained. A hole 5.0 mm + 0.5 in diameter was drilled in a ball and a box cutter was used - 4 -

>
to clean the edges of the hole and ensure that ;?ﬁ smooth without jagged edges. A Vernier Caliper o a,}
was used to measure the final hole diameter thet was smoothed with a box knife. A Vernir microphone

was hooked up to loggerpro on the computer and set to a sample rate of 100000 samples per second for + &5 “}A
0.5 seconds. Air was blown through a straw onto the hole in the ball at an angle such thaf a sound was rﬁ"_: o ;’*

made, and with an airflow such that a lower frequency could be obtained by bTEwing softer. . If air was AL
blown sofily across the hole a quiet, and very low sound was produced, however this was not used as it

was hard to distinguish between the sound produced and other background noises. If air was blown

harder, then a higher and louder frequency was heard. The same thing occurred if air was blown harder

still, in discrete increments. The frequency studied in this experiment was the first one after the very low



LJ"’» and quiet resonant frequency. As soon as the sound was produced the microphone was started and data

L WV collected. This was repeated six times for each of the six balls with hole diameters ranging from 5.0 mm
" v
+0.5to 13.0 mm + 0.5. =3
@ - ~ \
. . -
Data: : &
Controlled Factors f f
Ak w
.l \’f’ The controlled factors were measured before the invesfigation and kept constant during all trials, The W*;)V ar v
o temperature of the air outside of the ball was 27 °C+1 and was measured with a thermometer. The At W

v temperature is important because it affects the speed of sound in the medium. However, the air
= temperature outside the ball is not the most important temperature as the air inside the ball is the
oscillating medium. The temperature inside the ball was 32 °C + 2, and was measured by placing a
thermometer inside the ball after being blown on numerous times.-KJthough it was assumed that the
& thickness of the ball was negligible, the validity of that claim was still unknown so the measurements ;
~ % were still taken. The wall thickness wa?&OBaS?::/O;OOOOS and was measured by cutting a piece of the i
v ball’s wall out and using a micrometer.”The volume of the ball was 220 ml + 10, and was measured by oI
filling the ball with water, and measuring the volime of water the ball contained with a 1 liter graduated ~— +~
~ 7% cylinder. The speed of sound in the ball was 350 m/s = 3 according to engineeringtoolbox.com where the — »*

13

%

v

+ A
T g temperature inside the ball was used to calculate the speed of sound. The neck length (as seen on figure e
1) for the balls was kept at zero by not having a neck on any of the balls. );_,
W
After the data was recorded on loggerpro the “examine” function was used to find the frequency with the
highest amplitude on the FFT graph created by loggerpro. )
7% =
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Figf:re 4 This sample graph shows the frequency as compared to the amplitude of the sound made by the ball
5.0 ""M with the smallest hole diameter for its first trial. The frequency with the largest amplitude was taken for every
= trial, for all the balls. -

N
\,J\-\
The data recorded (appendix 1) for the frequencies produced with the highest amplitudes was used to
calculate (appendix3) the frequencies squared as compared to the hole radius.

pl ——
W i o
jﬂc,.r-"' : \ >,
(» Lw‘,‘_tﬂ’a y_r
J\ N Ve 1
N R T B ‘(yfu
o § Vi
\}\"’F p ‘w"f a -'/“‘_.
Fa. 1\.! (‘:’!’:)

Compare to Helmholtz Resonance

)

-

s



e |

B

0ﬁAverage Frequency Squared VS Hole Radius
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Figure 5 This graph shows the Average frequency of sound produced squared as compared to the radius of
the hole in the ball at which the sound was produced.
< Average Frequency Squared VS Hole Radius
< 10000000 == === e ‘A
o M
9 1 X M
3 1 WA
= TR
%) ’ ;
e | 4"
5 5000000 s
= g g
o
E -
LC
[0
> |
:]_j O T 6 T
E 0.00 .02 0.04 0.06
/ Hole Radius (m) )
) ; oo
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From this graph it can &asily be seen that the data collected does not seem to support the theory of
Helmholtz resonance as the correct model for this situation. This is clearly shown by the incredibly high
y-intercept, as a proportional fit must pass through the origin. Also it can be seen that there does not seem _~
to be much increase in the frequencies recorded as the hole size was increased by 260% with only a 5%~
increase in frequency. This indicates that the hole size does not significantly affect the frequency
produced, again evidence that Helmholtz is not the correct model. However, as the slope is a rather large

“ number, conclusions cannot yet be made as to the effect of the hole size. Also, as the frequency squared - W
i A% ” idea assumed that the ball had a negligible wall thickness, and the validity of that assumption is unknown, o_\{‘t "
| & S Helmholtz might still relate to the data. Thus the recorded frequencies will be compared to the X W{’
X 5 frequencies predicted by Helmholtz Resonance. The full list and derivation of predicted frequencies can _, - A
o 2% be found in appendix 4. —— 2 = 2 :%
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Figure 7 This graph shows the frequencies obtained experimentally (red) a}d the theoretical frequencies (2~
predicted by Helmholtz resonance (blue) as compared to the differe € sizes. The hole radii were used
along with the equation for Helmholtz resonance (including the wall thickness) to find the predicted ~ «* . %
. k s . 4 A
frequencies. It can easily be seen that Helmholtz does not seem tg/ describe what is occurring. \o\\\ U‘*&
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/ o e



From this graph it can be seen that the assumption for negligible wall distance was false because the
predicted values are not proportionally related. Also, there is a large difference between the frequencies
received, and the theoretical frequencies predicted by Helmholtz Resonance. This shows that even though
the assumption of negligible wall thickness might have been false, Helmholiz does not seem to explain
this data. Aside from the difference in frequencies produced, the slope of the linear fit regarding the
predicted values is 666%,of the slope for the recorded frequencies. This also suggests that said model is
not correct, and that the hole size may not greatly affect the frequency produced. Now the question

remains: Does Spherical Hat‘(rlonics model the phenomenon correctly? 2
: — G 5D
Compare to Spherical Harmonics /)

The frequencies predicted by Spherical Harmonics were found through Russell’s investigation.
Assuming that spherical harmonics is the correct model for this research, the hole size would not greatly
affect the frequencies produced; an idea supported by the data. Thus to test the validity of the spherical
harmonics model the average frequencies produced by the different hole sizes will all be averaged to
create a mean frequency for this harmonic.

This average frequency produced from the ball (the average of the averages) is only 6% higher than the

theoretical value predicted by spherical harmonics. However, that is only one data point, and as such this T
investigation will be extended to other harmonics besides the one previously tested, which is the first

harmonic according to spherical harmonics.
Other Harmonics

The FFT graphs originally recorded for the earlier data can be revaluated to find the other harmonics. As
can be seen by figure 8, there are multiple peak frequencies aside from the one looked at previously,
however they have lower amplitudes. These peaks can be found and cross referenced with the predicted
frequencies from spherical harmonics to see if the data supports theory. Since these peaks are much
smaller in amplitude than the first harmonic, they are not always picked up by the microphone over other
background noises. This means that some graphs did not have certain harmonics represented while other
graphs did. As such, only the most prevalent harmonics will be discussed; however ten of the first
thirteen predicted harmonics were found in multiple graphs. _ -
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Figure 8 This sample graph shows the frequency as compared to the amplitude of the sound made by the ball
with the 4mm radius hole diameter for its first trial. The scale has been set to clearly show the different

harmonics reached. \(\
)/L
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Table 2 in appendlx 1 shows the frequencxes found when each of the FFT graphs were analyzed for the
second major peak. There was one other easily visible peak before this one, however it only consistently
occurred for balls with the largest and the smallest hole sizes.

Again, the data supports that the hole size does not significantly affect the frequency, as there is less than
2.83% difference between the average frequencies of the different hole radii. The FFT graphs were again
reanalyzed for any other prominent frequencies. Two other modal patterns were also frequently
noticeable on the FFT graphs, with the higher frequencies having less trials containing adequate data.
When eval l:l_ated it was seen that the higher the frequency, the lower the percentage change due to
changing hole sizes. As all the data supports that hole size does not significantly impact frequency, the
assumption that an average frequency from the different hole sizes represents the harmonic frequency,
seems valid. The average frequencies were compared to calculated theoretical frequencies, as predicted
by spherical harmonics.
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Figure 9 this graph visﬁlly shows the variation between the recorded value and the theoretical values of the o '{'w :.-'l"
frequencies. The blue dots represent the theoretical values, and the black circles symbolize the recorded values. A L\J f_\.*“‘
The x values re esei}j}éhe modal shapes that produce the frequencies graphed, and show the different " ee o
harmonics. . 0 ol -

From figure 9 it can be seen that the average values are very close to the theoretical values predicted for
those harmonics with the assumed modal shapes. Also, the small error bars further supports the idea of
hole size not significantly affecting the frequency as the range of average frequency values was used to
find the uncertainty. Frequencies predicted by Helmholtz resonance did occur, and were found in some of
the graphs. However the number of graphs with a clear peak at Helmholtz resonance frequency was
sparéf_:._Also Helmhotz resonance seemed to break down afier the first three hole sizes as peaks did occur
but with a lower frequency than predicted Helmholtz values.

Conclusion:

From figure 9 it can easily be seen that the spherical harmonics theory seems to support the results much 3
more accurately than Helmholtz resonance theory as the theoretical frequencies for spherical harrmonics

are almost the same as the recorded frequencies. However, as frequencies matching Helmholtz Resonance
were occasionally found, and a lower frequency could have been produced by the balls, Helmholtz may

still govern some aspect in this situation. Helmholtz resonance could have governed the low quiet sound
produced when the air was blown softly, and might be a useful further study. This indicates that the
velocity of the airflow could determine which of the constructively interfering waves has the highest
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amplitude and thus the prominent modal pattern. It may even determine which model explains the
resonance present. The first harmonic predicted by spherical harmonics was the lowest frequency
analyzed, however peak frequencies were occasionally found lower than that; leading to the conclusion
that Helmholtz resonance could have been occurring, just not producing sound with a high enough
amplitude to compete with the sound produced by the spherical harmonics. As all frequencies measured
were lower than the theoretical, except for the first harmonic, it appears that the hole causes the frequency
to be slightly lower than theoretical predictions. However, as the size of the hole increases it seems that
the frequency increases as well, bringing the frequency produced closer to the theoretical values for all
but the first harmonic. Tt must be noted that the predicted frequencies were calculated for air in a sealed
ball being tapped with a metal rod, while the investigation undertaken in this research utilized balls with
holes (Russell). This changes the basic design for the research; however the model of spherical
harmonics governs both. In the situation discussed above the sound created results from a standing wave
in the ball due to a stream of air blown through the hole; whereas in the theoretical situation the sound is
created by the oscillations of the sides of a rubber ball after being tapped with a metal rod. The hole in
the ball may also affect the possible modes created. If the point of the wall with the hole was a nodal
point in a in a certain standing wave modal pattern, that modal shape may not be possible in the holey ball -

as it is in the complete ball. Even though the hole may preclude some modal shapes, it does not
necessarily preclude the formation of certain predicted frequencies as there can be different modal

patterns of the same frequency. This is due to the m component as can be seen in figure 2. Therefore, iniv* |
conclusion, spherical harmonics better predictes the frequencies produced in the investigation, yet Con+"”
provides little insight into the effect of the hole size. Y Javt

Evaluation:

One of the biggest sources of error was that some of the holes in the balls contained ridges and were not
smooth. As the holes got larger the holes tended to become rougher, with the ball with the largest hole
containing a hole not circular with slightly jagged edges. Although a box cutter was used in an attempt to
smooth the edges of the hole, it normally would cut into the edge of the hole reducing the circularity of
the hole. This made it difficult to measure the diameter, and thus the size of the hole. This could have
caused unwanted turbulence around the hole, disrupting the resonance occurring in the ball. This could
have been reduced if another method had been used to try and smooth the holes. A dental tool, such as
the Turbo Carver, could be used with sandpaper in the end to smooth the edge of the hole."
! v
Another weakness of this lab is that though it was attempted to maintain a constant speed of the airflow
and angle of the straw, there was some variance in the way that the air was applied to the hole in the ball.
This variance in the speed and angle of the air could have changed the frequency as different strengths
produces different harmonics and the angle of application can change the frequency. This could be
counteracted by using a machine, rather than a human, to apply the airflow. An air pump could be
hooked up to the straw and secured in place. The ball could then be introduced to the stream of air in
such a way that sound is produced and then also secured in place. In this way neither the ball, nor the air
supply/power, nor the straw would be moved during the trials; increasing consistency and precision, and
reducing random error. i

o
A third source of error in the evaluation of the data is that sometime it was difficult to decide the correct
modal shape that the frequencies represented. For example the (1,7,m) modal shape prescribed to the last

—



13

set of frequencies has two other modal frequencies within 4% difference of the predicted frequency of
(1,7,m). Although the average recorded frequency for that peak is only 1.9% different from the theoretical
value, there is the possibility that the recorded peak does belong to a different peak and the presence of'a

hole just changed it. Even though it seems as if the size of a hole does not affect the frequency much, the
presences of a hole could affect the frequency as no balls were tested in which there was no hole. This is

one of the hardest problems to fix, and most likely will only realistically be able to be accomplished for

the lower frequencies. The strength of the airflow on the hole of the ball decides which modal pattern

will have the highest amplitude. If air was blown harder on some of the balls then the (1,2,m) modal
frequency had the highest amplitude. Thus the strength of the airflow could be increased so that data is
recorded when each modal shape’s frequency has the highest amplitude. In this way the modal shapes

could be moved up one by one. However, as the hole sizes increased the force with which air was need to

be blown increased as well. Meaning that for the ball with the largest hole it was very difficult to induce o 2
resonance, as a strong stream of air was needed. Thus after the first couple harmonics it will be very //"'
difficult to increase the harmonics for the hole sizes in this investigation, even the small ones.

An interesting follow up for this experiment would be to see if the hole shape affects the frequency
produced, even though the size did not seem to. This might tell us more about the nature of the resonance
pattern in the balls.
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This table shows the raw data for the frequencies with the highest amplitudes over the six trials for each

of the six hole sizes.

Appendix 1

Hole Diameter Highest Frequency
(mm) : (Ho)
0.5, ,
Triall | tial2 | trial3 | Trial4 | Trial5 | Trial6 | Average | Uncertainty | /

5.0 3207 | 3198 | 3192 | 3192 | 3209 | 3192 3207 8
57 3209 | 3194 | 3192 | 3189 3203 | 3192 3209 +10

6.3 3220 ) 3229 3223 [ 3221 | 3221 | 3224 3220 45

8.0 3198 | 3210 | 3198 | 3209 | 3210 | 3218 3198 +10

9.1 3239 | 3233 | 3233 [ 3238 | 3223 | 3232 3239 +8

13.0 3279 | 3290 | 3281 | 3279 | 3271 | 3275 3279 +9

/ Table 1 This table shows the recorded frequencies of sound as compared to the diameter of the hole in
a ball which produced the sound. The uncertainty was found by halving the range of the frequency -

values.

Theses tables show the raw data after the FFT graphs were reanalyzed for the most prominent

frequencies.

—

Hole Diameter Highest Frequency

(mm) (Hz)

+0.5 _ | Triall | trial2 | trial3 | Triald4 | Trial5 | Trial6 | Average | uncertainty
5.0 6420 | 6410 | 6360 | 6380 6380 6390 +30
5.7 6411 | 6336 6401 | 6372 | 6380 +40
6.3 6410 | 6460 | 6430 | 6420 | 6420 | 6410 6420 +20
8.0 6330 | 6370 | 6408 | 6410 | 6410 | 6430 6390 +50
9.1 6470 | 6460 | 6470 | 6490 | 6440 | 6450 6460 +30
13.0 6550 | 6580 | 6570 | 6570 | 6550 | 6550 6560 £10

Table 2 This table shows the second peak set of frequencies recorded for the different size
holes. The uncertainty was found by halving the range of the frequency values. The absent
values indicate that there were no recognizable peaks for those trials.

As can be seen, the above harmonic appears in almost every trial. However for the next modal patterns
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presented, the data for certain hole radii was not abundant enough for analysis. Those hole sizes are not \
shown in the following tables.

(Continues on next page)



AL
Hole Diameter Highest Frequency
(mm) (Hz)
+0.5 Triall | Trial 2 | Trial 3 | Trial 4 | Trial 5 | Trial 6 | Average | Uncertainty
5.0 10200 | 9600 | 10200 10200 | 10000 +300
6.3 9630 | 9650 | 9620 | 9650 | 9650 | 9650 9640 +10
8.0 9560 | 9570 | 9600 | 9630 | 9640 | 9650 9610 +50
9.1 9720 | 9690 | 9690 | 9750 | 9670 | 9710 9700 +40
13.0 9830 | 9870 | 9830 | 9830 | 9820 | 9830 9830 +30

Table 3 This table shows the raw data for the third frequency recorded for the different size holes. The
uncertainty was found by halving the range of the frequency values.

Hole Diameter Highest Frequency
(mm) (Hz)
+0.5 Triall | Trial 2 | Trial 3 | Trial 4 | Trial 5 | Trial 6 | Average | Uncertainty
6.3 12860 | 12880 | 12860 | 12880 | 12850 | 12890 | 12870 +20
8.0 12780 | 12830 | 12780 | 12850 | 12850 | 12880 | 12830 £50
9.1 12990 | 12940 | 12940 | 12960 | 12880 | 12940 | 12940 +50

Table 4 This table shows the raw data for the fourth frequency recorded for the different size holes.
The uncertainty was found by halving the range of the frequency values.
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g Appendix 2
Here is the calculated data used in creating figures 5 and 6 and the method in which this data was
calculated. 7 ”
F 4 " / ks al} f’ . | J

i q
Radius Average Frequency Squared | Uncertainty BN X T /La-w o w”

LA (tm) (Hz)? 5 R o A

. ™ +0.25 — 532 \

ot 2.50 10230000 +50000 3 Y-
. 2.85 10220000 60000 e L2
o ad 315 10390000 30000 " N
k¥ 4.00 10290000 +60000
4.55 10450000 +50000 7 )
6.50 10750000 +60000 Y,
2 E, e O
Table 5 This table shows the measured frequency squared as oJ" 10 X
compared to the radius of the hole in of the ball et % W 3
- W2
AN

Sample Calculation: Finding the uncertainty of the Frequency squared for the hole with the largest
diameter \.L} -
e
fr=fFxf -
f2=(3279+9) % (3279+9)
=" Actual: 10751841
: High: 10810944
v Low: 10692900
Final: 10750000 + 60000



Appendix 3

v
The values for the frequencies predicted by Helmholtz Resonance are calculated and shown in tale 6.

Sample Calculation: Theoretical Value for Frequency Produced by the Ball with the Smallest Hole

Including the Ball Wall Thickness
_ 3
F=om |V (h + 1.5r)

350+ 3‘[ (. 0250 +.0025)?

b= (00022 £ .00001) ((.00035 % .00005) + 1.5(.0250 + .0025))

Actual: 855.38
High: 1023.41
Low:711.98
Final: 900 + 200

Radius Theoretical
(m) Frequency
+.0025 (Hz)
+200
0.0250 900
0.0285 900
0.0315 1000
0.0400 1100
0.0455 1200
0.0650 1400

Table 6 This table shows the Frequencies

predicted by the equation for Helmholtz /
resonance as compared to the radius of the (
hole in the ball \

18



The average values for the frequencies of each modal pattern are calculated and displayed in table 7.

Appendix 4

Sample calculation: Average Frequency (Hz) for all hole sizes for the first Harmonic

hth+ha+hatf+]fe

Average =

Average =

6

3207 £ 8+ 3209+ 10+ 3220+ 5+ 3198+ 10+ 3239 +8+ 3279+ 9

6
Actual:32229]1 ~——
High:3233.6667 ——
Low:3217 —
Final: 3223 Hz + 8
Probable Mode | Theoretical Frequency | Average Frequency Average Percent
Shape (Hz) (Hz) Frequency Difference
Uncertainty from
Theoretical
1,I,m 3046 3223 +40 5.8%
2,0,0 6575 6430 + 80 -2.2%
1,5,m 9898 9770 +200 -1.3%
1,7,m 13078 12880 + 60 -1.5%

Table 7 This table shows the theoretical values of the frequency as predicted by spherical harmonics and
how they compare to the average frequencies collected assuming that the hole size does not have a_
significant impact on the frequency emitted. It also shows the percentage by which the average
frequencies differ from the theoretical values (Russell). The uncertainties were found by halving the
range of the average frequencies as that uncertainty was always larger than the uncertainty as calculated
by the previous sample calculation.



Appendix 5 -

The calculated frequencies predicted by spherical harmonics are displayed in table 8.

Modal Shape | Predicted frequency | Uncertainty
L (Hz)
S I,L,m 3050 +20
o L.2m 4890 +30
o 2,0,0 6580 £30
o 1,3,m 6600 +30
1,4,m 8270 + 40
2.1.;m 8700 + 50
1,5,m 9900 + 50
2,2,m 10680 + 60
3,0,0 11320 + 60
1,6,m 11500 + 60
2,3,m 12570 + 60
1,7,m 13080 + 70
3,1,m 13490 + 70
2,4,m 14410 + 70
1,8,m 14660 + 80
3,2,m 15540 + 80
4,0,0 15960 + 80
2,5,m 16210 + 80
1,9,m 16230 + 80
3311 17530 +90
2,6,m 17980 +90
4,1,m 18160 + 90
3,4,m 19500 +100
2,7,m 19700 + 100

Table 8 This table shows the predicted Spherical

Harmonics frequencies and their corresponding /

mode shapes \_[/

1]

The theoretical frequencies according to spherical harmonics were calculated in Russel’s investigation,
and since the frequencies are inversely proportional to the radius of the hollow ball, the frequencies
H predicted for this research can be found using proportions.

|
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(Continues on next page)

Sample Calculation: Finding the First Theoretical Harmonic for Spherical Harmonics

AXn=fXr,
_fixmn
fa S
_979x.116
2= .037278 +.0002

Actual:3046.4
High:3061.02

Low: 302837 2y
Final:3050 +20 _ =%






