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Abstract 

Should computer processor development focus be shifted from sequential to parallel 

computation? This question asks whether or not the resources allocated to technological 

development should be shifted from a sequential computation based focus to a parallel 

computation based focus. Moore's law, which states that the density of a computer chip doubles 

every 18 months, is quickly reaching the end of its validity. A transistor can only be so small, 

and they are quickly reaching that limit. The solution to this problem may be found in parallel 

processing. This paper gives a brief introduction to the general theory of parallel computation 

and its limits and capabilities, followed by an investigative example of parallel programming to 

reaffirm theory in real world practice. 

The investigation led to the conclusion that the advantages of parallel computation 

outweigh its disadvantages and therefore it is worthwhile to shift focus from sequential 

computation to parallel computation. More parallel algorithms and more efficient parallel 

systems should be developed in order to ensure the continuation of technological improvement. 
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Introduction 

Should processor development focus~'be,-shifted--fr6m sequential to parallel? 

Moore's Law states that the processing power of a computer doubles every 18 months 

(Kaku). However, processors are beginning to reach their physical limits and the growth of 

processing power has slowed (Kaku). There is already a trend to sidestep this slowing growth by 

increasing the number of cores per CPU, but the technology is not used to its maximum 

potential, due to slow growth in the parallel field relative to that of the sequential. Most 

programming languages have been designed with sequential computation in mind, and although 

a few have parallel APis, they are nowhere near as refined as their sequential counterparts 

(Consider the standard for-loop, a clean, efficient sequential coding practice, compared to Java's 

Thread object, with its multiple auxiliary classes and lack of organization). Thus, an increase in 

parallel processing research may make more use of the growing trend to produce parallel 

hardware, further advance the production of such hardware, and pose as a potential solution to 

nature's physical limits on sequential processing. However, although the intuitive thought would 

be to simply continue to multiply the number of processors in use in order to increase computer 

speed, but that may not always be the case. 

Parallel processing algorithms split otherwise sequential processing algorithms into 

various chunks that can be run simultaneously. Unfortunately, because life is not ideal, 

distributing processing requires a certain amount of processing in itself, or overhead, which may 

make parallel processing inefficient in certain cases. 

The purpose of this essay is to determine whether or not parallel processing's advantages 

outweigh its disadvantages enough for research into technological improvement to be shifted 
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away from sequential processing and towards parallel processing. This will be accomplished 

through an investigative approach, first describing parallelism itself, then the theory surrounding 

itself, followed by a real-world experiment. 

Word Count: 307 

Summary of Evidence 

A. General 

Parallel processing employs multiple processors to solve problems in a concurrent 

fashion rather than a sequential fashion. This is done by "breaking up a task and having 

processors work on the parts independently (Smith 3)." The reasoning behind this is that if you 

have a problem that takes t time to solve and you split it up into N portions that all run at the 

same time, it should theoretically take tiN time to solve this new problem. 

There are several ways of going about solving a problem in a parallel manner, but all of 

them have one thing in common: they require multiple processors. Because processors can only 

complete one instruction, or process, at a time, having multiple processors that can all 

communicate with each other, either with shared memory or some other physical connection, 

allows for multiple processes to occur concurrently. These connections allow for processors to 

combine their output data into one final output for a given input. Some examples of parallel 

systems are SMP, or shared memory multiprocessor, cluster, and hybrid (Kaminsky 22). Shared 

memory multiprocessor computers are computers where each processor has its own CPU/Cache 

unit and shares a main memory with the others (Kaminsky 22). Cluster parallel computers have 

frontend processors to distribute the problem to several backend processors with their own 

CPU's and memories (Kaminsky 22). There is no main, shared, memory in cluster computers 
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(Kaminsky 22). Hybrid parallel computers are simply a combination of the two (Kaminsky 25). 

Neither of these systems is necessarily better than the other, but each is "best suited for certain 

kinds of problems" and each has it's own requirements and dependencies (Kaminsky 28). These 

are only some of the systems of parallel processing, and there are many more ways to construct a 

parallel system. The multitude of possible parallel processing systems means that parallelism has 

many more degrees of freedom than sequential computing when it comes to problem solving 

(Skillicom 5). These degrees of freedom can make it difficult to find the optimal solution to a 

given problem when using a parallel construction (Skillicom 5). 

In order to go about solving a problem in a parallel fashion, some general steps are to be 

taken. First the problem must be analyzed and split into different processes that can be done 

concurrently. This is best shown through example of how pipelining, a popular parallel method 

that is even used in some high-end single-core processors, would be implemented. Consider the 

functionf(x,y) = 2(x + y) 2 . Ifyou decompose this function using the mathematical order of 

operations, you have three steps. First the parenthesis must be calculated, so (x + y), which, for 

the purposes of this example equals a. Then, the exponent must be solved, so a 2
, which, equals 

{3. Finally, the multiplication must be processed, so 2 * {3, which is the output ofthe function. 

Using this decomposition we can parallelize the problem. Given the input (x, y ), we pass it to a 

processor n 1 , which is dedicated solely to that function fa (x, y) = x + y. When that processor 

completes the calculation, it passes its result to processor n 2 , which computes fb (a) = a 2
, and 

then takes the next input. Finally, n 2 passes its results to n 3 , which computes fc(f3) = 2 * f3 and 

then outputs the result. This may seem like a waste of time, since three computations takes 

almost no time with the processing power oftoday's computers, but ifthought of in time cycles 

and with large amounts of inputs, it certainly does. Assume that each instruction takes only one 
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cycle, regardless of the processor used or the type of instruction and ignoring input and output. 

On a sequential processing unit, for every input, it will take one cycle to add, one cycle to square, 

and one cycle to multiply, giving a total of three cycles per computation. This may not seem like 

much at all, but given 1 billion input numbers, it would take 3 billion cycles to output all of the 

solutions. Now, consider a pipelining processing system. The first processor would take once 

cycle to compute the addition. Then, after passing on the output, it would accept another input 

and begin processing it, therefore, in that one cycle, two outputs are produced: that of the first 

and second processor. After that cycle, one cycle would produce three outputs (one for each 

processor) and according to our example, one of those outputs would be our solution. Thus, after 

three cycles, the machine would begin to produce one output per cycle, whereas the sequential 

unit would produce one output for every three cycles. This reduction in time, while small, scales 

over expressions involving larger amounts of computations (so a five step computation would 

take 1/5th the time to solve using pipelining) and is useful when large amounts of input are 

provided. However, there are also fallbacks to this method of parallelism. Firstly, it is very 

difficult to make a pipe lining system adaptable, that is, you can set up an architecture to solve 

one function, but in order to change it to solve another, it will take some time and is tedious 

(Fountain 33). Furthermore, in reality, not all computations take the same amount oftime, and 

thus a processor in the pipeline may bottleneck the entire process. This could be solved using 

multiple pipelining systems that have multiple processors per instruction, but this would simply 

add to the overhead and complexity of the solution, further slowing it down. Also, pipe lining can 

only solve a very particular type of problem and does not work for all solutions (Fountain 33). 

Thus, in pipelining, and other parallel solutions, there are both pros and cons that must be 

weighed when deciding what to implement. 
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Thus, although there are many parallel computation models, it is difficult to choose 

which model is appropriate for a specific problem. Furthermore, some theorize that there may 

not be a correct parallel model for certain problems (Smith 4). These inherently sequential 

problems would have no parallel solution more optimal that its most effective sequential solution 

(Smith 4 ). The existence of such problems would surely be a huge blow for parallel computing, 

and many problems appear to be inherently sequential. However, none have been found and 

problems that have seemed inherently sequential simply needed to be tackled from another angle 

(Smith 4). 

Word Count: 1 041 

B. Limits to Speedup and Sizeup 

Parallelism undoubtedly speeds up certain problems, but there are restrictions. First, let 

us define speed up: If N =Problem Size, K =Number of Processors, and T = 

Time to Solve a Problem, because Tis dependent on several factors such as processor speed, 

problem size, and number of processors, we can define the amount oftime to solve a problem as 

T (N, K) (Kaminsky 1 00). Furthermore, because we are considering two types of computing, we 

can split this up into Tseq(N, K) and Tpar(N, K). Now, because speed is the reciprocal of running 

time, S(N, K) = -
1
- (Kaminsky 1 00). With this definition of speed, we can define speedup as 

, T(N,K) 

the ratio ofthe speed of the parallel version to the speed ofthe sequential version (which is NOT 

the parallel version using one processor so as to not cancel out the overhead of the parallel 

1 

. . h' . · k h d ( ) Spar(N,K) Tpar(N,K) versiOn m t IS companson) (Kamms y 101). T us, Spee up N, K = C ) = 1 = 
Sseq N,l Tseq(N,K) 

Tseqt·K~' which can be used to define the efficiency of a parallel program with respect to the 
Tpar N,K 

number of processors and the sequential version as Eff(N, K) = Speedup(N,K) (Kaminsky 101). 
K 
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This efficiency should be equal to one in an ideal parallel program, because the speed up would 

increase by factors of K, which would then be divided by K (Kaminsky 101 ). However, because 

most programs are not ideal, this is not so. 

Gene Amdahl described parallel computing as a sequential portion that every program 

must have, followed by the parallel potiion (Kaminsky 1 02). Parallel programs have overhead 

that must be solved sequentially, such as stmi up and the distribution of processing requirements 

over the network. If this sequential fraction F is incorporated into the T (N, K) function, we 

arrive at T(N, K) = F * T(N, 1) + ~ (1- F)* T(N, 1) (Kaminsky 103). Plugging this into our 
K 

previous functions, we arrive at new speedup and efficiency functions: 

( 
T(N, 1) T(N, 1) 

Speedup N,K) = = -------::,-------
T(N, K) F * T(N, 1) + ~ (1- F)* T(N, 1) 

K 

Speedup(N,K) 1 
E f f (N, K) = K = K F + 1 - F 

1 
F + 1-F 

K 

(Kaminsky 103 ). 

Now, we find that as the limit of K goes to infinity in Speedup (N, K), the speedup approaches 

1/F, those posing as a limit for the speedup of a sequential problem using parallel means 

(Kaminsky 1 03). Fmihermore, as the limit ofK goes to infinity in Efficiency (N, K), the 

efficiency approaches 0 (Kaminsky 1 03). Therefore, adding processors does not exactly entail an 

increase in efficiency. The larger the sequential portion, the more quickly a function becomes 

completely inefficient. These restrictions imply that parallelism is useful only when the 

sequential fraction can be kept small, a difficult feat in itself Consciousness itself is sequential, 

although it may seem parallel, and therefore coming up with the proper parallel solution with a 

small sequential fraction can be difficult (Skillicorn 5). Even in the aforementioned pipelining 
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example, the sequential fraction would be quite large in actual implementation, especially if 

attempting to make a more generic pipelining system. 

Another method of determining parallel-sequential trade off is through sizeup. Rather 

than "expressing a program's running time as a function of the problem size and the number of 

processors ... we can just as easily turn that relationship around and express the program's 

problem size as a function ofthe running time and the number of processors" and thus consider 

sizeup rather than speedup (Kaminsky 122). First, let us define the program's problem size as 

N (T, K) and its size-up as Sizeup(T, K) = Npart·K~ which implies that, ideally, a system with K 
Nseq T,K 

processors should be able to solve K times more problems (Kaminsky 122). The efficiency of 

such a system with respect to sizeup is SizeupEff(T, K) = sizeup(T,K) (Kaminsky 122). John 
k 

Gustafson argued that sizeup was more practical than speedup and that when scaling up a 

problem, the parallel fraction scales up, not the sequential fraction (Kaminsky 123). Now, 

incorporating the sequential fraction into sizeup we atTive at: 

First we assume that the program's sequential portion is independent ofN and parallel 

portion running time is directly prop011ional to N: 

Solving for N: 

1 
N(T,K) = dK(T- a) 

. N(T,K) 
Stzeup(T, K) = N(T, 1) = K 

Sizeup(T, K) 
SizeupEff(T, K) = K = 1 

(Kaminsky 125). 
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Therefore, programs experience ideal sizeup when increasing the number of processors if the 

sequential portion does not scale up with the number of problems (Kaminsky 125). However, 

this is only an approximation, as the sequential portion's running time does increase with the 

number of problems (Kaminsky 125). This is shown through the following equations: 

First, we define (a+ bN) as the running time for the sequential portion and (c+dN) as the 

running time for the parallel portion. So: 

Solving for N: 

1 
T(N,K) =(a+ bN) + K (c + dN) 

c T-a--
N(T,K) = d K 

b+-
K 

KT- Ka- c 

Kb+d 

. N(T,K) (KT- Ka- c)(b +d) 
SLzeup(T, K) = N(T, 1) = (T- a- c)(b + dK) 

a and c are both small compared to the other factors, so they can be eliminated: 

. (KT)(b+d) Kb+Kd K(£)+K 
SLzeup(T, K) = (T)(Kb +d) = Kb + d = K (£) + 1 

b 
. Sizeup(T, K) d + 1 

SLzeupEff(T, K) = = (b) 
K K- + 1 

d 

(Kaminsky 126). 

These alterations of the sizeup law change the entire nature of sizeup. Now, rather than never 

reaching a point of inefficiency, if we take the limit as the number of processors approaches 

infinity we get zero. Therefore, although sizeup is more practical that speedup, it does also have 

an inherent limit, according to Gustafson (Kaminsky 126). Thus, parallel computation has a limit 

to its efficiency. 



Word Count: 799 

C. Monte Carlo Investigation 

In order to display these effects of the sequential portion of a parallel program, I have 

devised my own parallel program and its sequential counter part. The mathematical constant Pi 

can be quite accurately estimated using a Monte Carlo Algorithm (Kaminsky 168). The basic 

idea behind this algorithm is that of a dartboard. Imagine a dartboard of radius one, centered 

about the origin of a Cartesian plane. The area of this circle is A = rcr2 = rc1 2 = rc, and if you 

split it into four parts, its area is rc/4. Now, the quadrant in which it lies has an area of 

IT 

A = s 2 = 12 = 1, thus the ratio of the area of the sector to the quadrant is 4 =?:..If a large 
1 4 

9 

number of"darts" are thrown at this quadrant, the ratio of those landing within the sector to all of 

them is~- Thus, fmding the ratio of darts landing within thesector to all of the darts thrown, and 

multiplying by four gives an approximation of Pi. This algorithm actually suits both a parallel 

and sequential program very well. In order to implement it sequentially, it actually only took a 

for-loop containing the random generation of an x and y coordinate less than 1 and finding if the 

distance is at most one from the origin, which, if true, added one to a counter. This can be 

summarized by the pseudo code below: 

function montePi (throws) { 
count = 0; 
for (i = 0; i < throws; i++) { 

x = random () ; 
y = random(); 
if (x*x + y*y <= 1), { 

count++; 

return count/throws; // 
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As this code shows, the algorithm is very simple and very efficient, but, because ofthe 

nature of the problem, the for-loop must be iterated many times. Normally, this would not be a 

problem as sequential computers can compute simple algorithms as the one above fairly quickly, 

but when trying to get higher and higher degrees of accuracy, the time for completion takes 

substantially longer. In order to go about speeding up this process, I decided to create a 

temporary cluster parallel computer in the form of a local network. It is actually two programs. 

One program hosts a server and accepts client programs that will be doing the processing. The 

server divides the dart throws evenly and distributes the trial count to the clients and eventually 

records and combines their results. This can be considered the sequential fraction of the program, 

as it must be completed on one computer. In order to make this sequential fraction slightly more 

efficient, I used a "Thread" java object for accepting client connections. This object allows for 

"an application to have multiple threads of execution running concun·ently" ("Thread") and 

therefore makes the sequential fraction smaller, since while the main thread is dividing the 

problem into smaller fractions, it does not have to waste time accepting client programs. The 

server computer had multiple processors and therefore each thread could be executed in a 

parallel fashion. In a sense, I added a parallel flare to the sequential fraction of the server. The 

clients simply compute the estimation using the given number of "dart throws" and send the 

estimation back to the server to combine and output. Using this system and the sequential version 

of the algorithm, which is simply the for-loop, given above, and some input-output, I will 

generate graphs of relevant data for several different system configurations (i.e. the number of 

processors) and numbers of "dart throws." In order to make comparisons accurate, I used the 

same model of computer for every processor used. Furthermore, the running time graph uses 

"log-log" axes because it is "better suited to plotting data that spans many orders of magnitude 
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(Kaminsky 108)." 

Running Time 
1000000 

=::=10000 ....... 
{1.1 

e 7i' 
'-' 

100000 

S2' 
' .../. :-.....<: 

:Z lOOrpr -a-1000000 
'-' 
E- ·~· 10000000 

'" 100000000 

1 ---1000000000 

1 10 

Processors 

Speedup 
7 

6 10000 

S2'5 
100000 

:Z -u:-1000000 
'-'4 
c. = a! 3 

10000000 

~ 
c. 

... 
100000000 

til 2 ~~ 
~' 

) 

~1000000000 

1 

0 
0 2 4 Processors6 8 10 



1.2 

1 

0.8 
~ 
~0.6 
= ~ 

0.4 

0.2 

0 
0 1 2 3 

Efficiency 

4 5 6 

Processors 

7 8 9 

~10000 

100000 

~1000000 

10000000 

~ 100000000 

~1000000000 

These three graphs displaying the speedup information described in the previous section 

show that the sequential fraction of a parallel program plays a key role in its performance. For a 

relatively small program size ( <1 0000000), parallelization was extremely inefficient. The 

sequential fraction took a certain amount of time, around 400 milliseconds per processor, and 

12 

this process, as predicted by Amdahl's Law, limited the parallelization's effectiveness. Although 

for the larger problem sets there is a clear speed up, especially for 10 million dart throws, there is 

a clear curve to the downward trend of the efficiency, with the efficiency leveling off as the 

number of processors was increased. The larger problem sets did not show this, but that can be 

attributed to a smaller sequential fraction relative to the problem size. 

Word Count: 712 
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Analysis 

The disadvantages of parallel computation include difficulty, expense, and inefficiency in 

certain cases. For certain problems, it can be very difficult to come up with an optimal parallel 

solution. For example, the cumulative sum of an integer seems inherently sequential from a first 

glance (Smith 4 ). The cumulative sum of an integer is the sum of all the integers from 0 up to it 

and the sequential algorithm would be as easy as a recursive function adding up all the numbers 

sequentially. However, there is an optimal parallel solution, it is just much more complex and 

difficult to arrive to (Smith 4). There are many problems that are seemingly inherently sequential 

and make it difficult to implement parallelism. Furthermore, a proper parallel solution may be 

too specific to be useful, such as with pipelining. Another hindrance to the production of parallel 

solutions is the sequential nature of human consciousness. When implementing the Monte Carlo 

problem above, the solution was almost intuitively sequential and although easy to parallelize, it 

was much easier to implement sequentially. Parts of our mind do work in parallel, but the 

majority of our conscious lives takes place in a sequential fashion and thus inhibits us from 

forming parallel solutions (Skillicom 5). However, just because something is difficult does not 

mean it is impossible and parallel solutions are very much achievable. Furthermore, parallel 

computation models are fairly expensive. A multiprocessor computer may not be much more 

expensive that a single processor variant, but super computers, which have hundreds, if not 

thousands, of processors, cost millions of dollars. This is not so accessible to the average user 

and could reduce the usefulness of increased research into parallel computation for the average 

computer user. Lastly, there are certain cases when parallelism is not so useful. For example, 

with the small problem sets for the Monte Carlo problem, the overhead of the parallel solution 

made the problem extraordinarily ineffective. The added overhead is small compared to the 
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processing times of billions of"dart throws", but large compared to a million or so "dart throws." 

This inefficiency makes a sequential solution a more optimal solution for small problem sets. Of 

course, the sequential fraction and overhead could have been reduced, but that would have been 

more difficult, and that practicality of such a task depends on whether implementation time or 

solution time is more valuable to the user. Thus, there are significant drawbacks to parallel 

computation. However, the pros to be introduced below help alleviate some of the problems 

stated above. 

The advantages of parallel computation include an ease of implementation in problems 

belonging to a parallel domain (Skillicorn 4), its side-stepping of Moore's laws impending doom, 

and its cost effectiveness (Skillicorn 4). Some problems, having originated from the real world, 

where events occur in parallel, actually are easier to implement in a parallel fashion. For 

example, consider traffic lights, where some intersections use sensors rather than timers to 

determine when to switch the light from red to green. If one computer had to manage all the 

checking, processing, and changing involved with every intersection, things would update very 

slowly, as the processor would have to allocate some time to each intersection. Furthermore, the 

computer would have to handle all the exceptions, such as a police officer changing the color of 

the light in order to direct traffic manually after some accident. The computer would surely slow 

to a crawl after some time. However, if you use multiple computers, perhaps one for every traffic 

light, or a server of computers at the headquarters each given a specific intersection to control for 

some period of time and then handing it off to another computer, things would occur much more 

quickly and efficiently. That problem, having originated from a parallel world, lies in the parallel 

domain and is more easily solved in a parallel fashion. The time to solve this problem would be 

cut by a factor of the number of computers used. Aside from solving parallel problems with 
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much more ease, parallel computers would be able to solve the chaos ensuing the end of Moore's 

Law. If technology stops improving, the industry will collapse, as companies would have nothing 

left to develop. However, parallel computers can continue to grow and the systems can be 

continually improved upon. Also, parallel computers, although more expensive, are more cost 

effective. Although a super computer may cost millions of dollars, its processing power is 

unmatched by any sequential computer. It took 8 computers to substantially decrease the solution 

time of the Monte Carlo problem above, but the time that it saved may be more valuable than the 

cost. Imagine a problem that would take a thousand years to solve with a sequential computer. 

Assuming you can sale this down by one hundred with a one hundred-processor computer, the 

cost would be relatively low, considering the researchers would be able to live through the length 

of their program, rather than wait ten centuries. Also, as with all products, as more companies 

enter such a market, prices will invariably go down, making parallel computers more accessible 

to the average user as well as improve parallel systems which are too specific, such as pipelining. 

Lastly, the most important advantage is that any parallel computer can process a sequential 

algorithm, although slightly slower, whereas the same is not true in reverse. 

Word Count: 893 

Conclusion 

The information presented in this paper gives evidence to support the notion that parallel 

computation could replace sequential computation. Parallel computation allows for increased 

speed in solving problems of large magnitude. Although parallel algorithms do not scale exactly 

by a factor of the number of processors, the speedup is significant. Also, there are always ways 

to reduce the sequential portion and thus reduce the effect of Amdahl's law. With this ever 

increasing potential for speed increase, parallel computation provides a means to avoid the limit 
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that sequential computation will soon reach. Besides these valuable traits, parallel computation 

allows for a more cost efTective method of solving large, time-consuming problems and so far 

has not been found to be inefficient for any type of problem (i.e. no inherently sequential 

problems have been found). Furthermore, although it is difficult to come up with parallel 

solutions in certain cases, it is certainly not impossible and the advantages outweigh the added 

effort and cost. These advantages mean that there is enough reason to push for a change in focus 

from sequential to parallel computation. A larger focus should be held within the world of 

academia to the study of parallel algorithms and a large amount of research should be devoted to 

the development of parallel systems in the industrial sphere. 
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Appendix A 

The code for the Monte Carlo Investigation will be provided here. The program is written in 

Java. 

public class MonteCarlo { 

public static void main(String[] args) 
int dartCount, trialCount = 0; 
try { 

dartCount = Integer.parseint(args[O]); 
trialCount = Integer.parseint(args[l]); 

catch (Exception e) { 
Scanner sc =new Scanner(System.in); 
System.out.println("Arguments could not be read."); 
System.out.print("Dart Count: "); 
dartCount = sc.nextint(); 
System.out.print("Trial Count: "); 
trialCount sc.nextint(); 

long totalTime 0; 
double estimationTotal = 0; 
for (int a = 0; a < trialCount; a++) { 

long time= System.currentTimeMillis(); 
double countWithin = 0; 
for (int i = 0; i < dartCount; i++) { 

countWithin += (dartThrow()) ? 1 : 0; 

estimationTota1 += countWithin/dartCount; 
long newTime = System.currentTimeMillis() -time; 
totalTime += newTime; 

System.out.println("Value: "+ estimationTotal/trialCount*4); 
System.out.println("Total Time: "+ totalTime + "ms."); 
System.out.println("Average Time: "+ totalTime/trialCount + "ms."); 

public static boolean dartThrow() 
double x = Math.random(); 
double y = Math.random(); 
double result = x * x + y * y; 
return result <= 1.0; 
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Appendix A (Continued) 

import java.io.BufferedReader; 
import java.io.IOException; 
import java.io.InputStreamReader; 
import java.io.PrintStream; 
import java.net.ServerSocket; 
import java.net.Socket; 
import java.util.ArrayList; 
import java.util.Scanner; 
import java.util.logging.Level; 
import java.util.logging.Logger; 

/** 
* The server for the parallel program 
* @author Eric Ponce 
*I 

public class MonteCarloPiServer 

static ArrayList<Socket> clients new ArrayList<Socket>(); 

public static void main(String[] args) throws IOException 
final ServerSocket serverSocket =new ServerSocket(4444); 
Scanner sc =new Scanner(System.in); 
System.out.println("Socket Opened. Accepting Connections"); 
new Thread(new Runnable() { 

@Override 
public void run() { 

while (true) { 

} ) . start () ; 

try { 
Socket client= serverSocket.accept(); 
clients.add(client); 
System.out.println("Client Added"); 

catch (IOException ex) { 
System.out.println("Error. Exiting."); 
System.exit(O); 

while (sc.hasNext()) 
Strings= sc.nextLine(); 
String[] parts s.split(" "); 
int dartThrows = Integer.parseint(parts[O]); 
int trialCount Integer.parseint(parts[l]); 
if (parts[2] .equalsignoreCase("BEGIN")) { 

ArrayList<BufferedReader> readers = new 
ArrayList<BufferedReader>(); 

ArrayList<PrintStream> printers new 
ArrayList<PrintStream>(); 

for (Socket c : clients) 
readers.add(new BufferedReader(new 

InputStreamReader(c.getinputStream()))); 
printers.add(new PrintStream(c.getOutputStream())); 
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Appendix A (Continued) 

trialCount)); 

int n = clients.size(); 
int trialsPerClient = dartThrows I n; 
double value = 0; 
double estimationTotal = 0; 
long timeTotal = 0; 
for (int i = 0; i < trialCount; i++) 

long timeRunning = System.currentTimeMillis(); 
for (PrintStream out : printers) { 

out.println(trialsPerClient); 

int inputsRecieved = 0; 
while (inputsRecieved != n) 

for (BufferedReader in : readers) 
if (in. ready()) { 

value+= Double.parseDouble(in.readLine()); 
inputsRecieved++; 

timeRunning = System.currentTimeMillis() - timeRunning; 
value I= n; 
estimationTotal += value; 
value = 0; 
timeTotal += timeRunning; 

System.out.println("Value Estimated: " + (estimationTotal I 

System.out.println("Took a total time of " + timeTotal + "ms. 
and an average time of"+ (timeTotal I trialCount) + "ms."); 

} 

import java.io.BufferedReader; 

import java.io.IOException; 
import java.io.InputStreamReader; 
import java.io.PrintStream; 
import java.net.Socket; 
import java.net.UnknownHostException; 
import java.util.Scanner; 
I** 
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Appendix A (Continued) 

* The client portion of the parallel program 
* @author Eric Ponce 
*I 

public class MonteCarloPiClient 
public static void main(String[] args) throws UnknownHostException, 

IOException { 
String ip = ""; 
try { 

ip = args[O]; 
catch (Exception e) 

System.out.print("Argument could not be read. "); 
Scanner sc =new Scanner(System.in); 
System.out.print("Enter IP Address: "); 
ip = sc.nextLine(); 
sc.close(); 

final Socket socket= new Socket(ip, 4444); 
PrintStream p =new PrintStream(socket.getOutputStream()); 
BufferedReader b = new BufferedReader(new 

InputStreamReader(socket.getinputStream())); 
System.out.println("Connected to Server"); 
String input; 
while ((input= b.readLine()) !=null) 

System.out.println("Input Received. Calculating dart throws"); 
int n = Integer.parseint(input); 
double value = 0; 
for (int i = 0; i < n; i++) 

double x = Math.random(); double y = Math.random(); 
value += (x * x + y * y <= 1) ? 1 : 0; 

value = value I n * 4; 
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System.out.println("Calculated " + n + " dart throws and returned 
"+value+"."); 

p.close();b.close();socket.close(); 
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MonteCarlo Trial Data 

Trials Dart Throws Total Time Average Tim1 Estimation Clients Parallel? 

100 10000 172 1.72 3.144424 1 N 
100 10000 42229 422 3.143772 2 y 

100 10000 42337 423 3.14481848 3 y 

100 10000 42245 422 3.143468 4 y 

25 10000 10918 436 3.14784 5 y 

25 10000 10686 427 3.14152861 6 y 

25 10000 11029 441 3.14180072 7 y 

25 10000 10764 430 3.140591 8 y 

100 100000 1310 13 3.141396 1 N 
50 100000 21279 425 3.1406952 2 y 

50 100000 21387 427 3.1408746 3 y 

100 100000 42198 421 3.1417952 4Y 
25 100000 12213 488 3.1413808 5 y 

25 100000 10763 430 3.1410888 6 y 

25 100000 10796 431 3.1423459 7 y 

25 100000 10686 427 3.1419409 8Y 
100 1000000 12496 124 3.1417634 1 N 

25 1000000 12480 499 3.14208896 2 y 

25 1000000 11981 479 3.14124298 3 y 

100 1000000 46363 463 3.14159656 4Y 
25 1000000 11636 465 3.14111552 5 y 

25 1000000 11669 466 3.14111256 6 y 

25 1000000 11544 461 3.14146682 7 y 

25 1000000 11342 453 3.1411134 8 y 

100 10000000 136208 1362 3.141658 1 N 
25 10000000 26615 1064 3.1417121 2 y 

25 10000000 21153 856 3.14169863 3 y 

100 10000000 74630 746 3.1415871 4Y 
25 10000000 18546 741 3.14152 5 y 

25 10000000 16878 675 3.14154082 6 y 

25 10000000 16755 670 3.14149125 7 y 

25 10000000 15601 624 3.14163238 8Y 
10 100000000 125848 12584 3.14152606 1 N 
20 100000000 136807 6840 3.14159395 2 y 

20 100000000 90839 4541 3.14157433 3 y 

100 100000000 369438 3694 3.14159075 4 y 

25 100000000 91153 3646 3.14157886 5 y 

25 100000000 73675 2947 3.1416048 6 y 

25 100000000 66722 2668 3.141626 7 y 

25 100000000 62818 2512 3.14159842 8 y 

5 1000000000 639958 127991 3.14156738 1 N 
5 1000000000 318206 63641 3.14154676 2 y 

5 1000000000 210946 42189 3.14157228 3 y 

10 1000000000 324198 32419 3.14160028 4Y 
10 1000000000 289806 28980 3.14159671 5 y 

10 1000000000 252794 25279 3.14158751 6 y 

10 1000000000 230802 23080 3.14157692 7 y 

10 1000000000 207993 20799 3.1416198 8 y 




