International Baccalaureate Baccalauréat International Bachillerato Internacional

Mathematics

Higher level

Specimen papers 1, 2 and 3

(adapted from November 2014)

For first examinations in 2017

CONTENTS

Math higher level paper 1 specimen question paper

Math higher level paper 1 specimen markscheme

Math higher level paper 2 specimen question paper

Math higher level paper 2 specimen markscheme

Math higher level paper 3 discrete specimen question paper

Math higher level paper 3 discrete specimen markscheme

Math higher level paper 3 calculus specimen question paper

Math higher level paper 3 calculus specimen markscheme

Math higher level paper 3 sets, relations and groups specimen question paper

Math higher level paper 3 sets, relations and groups specimen markscheme

Math higher level paper 3 statistics and probability specimen question paper

Math higher level paper 3 statistics and probability specimen markscheme

Mathematics
 Higher level
 Paper 1

SPECIMEN (adapted from November 2014)
Candidate session number
2 hours \square

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all questions. Answers must be written within the answer boxes provided.
- Section B: answer all questions in the answer booklet provided. Fill in your session number on the front of the answer booklet, and attach it to this examination paper and your cover sheet using the tag provided.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A clean copy of the mathematics HL and further mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [100 marks].

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A

Answer all questions. Answers must be written within the answer boxes provided. Working may be continued below the lines, if necessary.

1. [Maximum mark: 4]

The function f is defined by $f(x)=\frac{1}{x}, x \neq 0$.

The graph of the function $y=g(x)$ is obtained by applying the following transformations to the graph of $y=f(x)$:

$$
\begin{aligned}
& \text { a translation by the vector }\binom{-3}{0} \text {; } \\
& \text { a translation by the vector }\binom{0}{1}
\end{aligned}
$$

(a) Find an expression for $g(x)$.
(b) State the equations of the asymptotes of the graph of g.
\qquad
2. [Maximum mark: 6]

The quadratic equation $2 x^{2}-8 x+1=0$ has roots α and β.
(a) Without solving the equation, find the value of
(i) $\alpha+\beta$;
(ii) $\alpha \beta$.

Another quadratic equation $x^{2}+p x+q=0, p, q \in \mathbb{Z}$ has roots $\frac{2}{\alpha}$ and $\frac{2}{\beta}$.
(b) Find the value of p and the value of q.
\qquad
3. [Maximum mark: 6]

A point P , relative to an origin O , has position vector $\overrightarrow{\mathrm{OP}}=\left(\begin{array}{l}1+s \\ 3+2 s \\ 1-s\end{array}\right), s \in \mathbb{R}$.
(a) Show that $|\overrightarrow{\mathrm{OP}}|^{2}=6 s^{2}+12 s+11$.
(b) Hence find the minimum length of $\overrightarrow{\mathrm{OP}}$.
(c) Explain, geometrically, why your answer gives a minimum value.
\qquad
4. [Maximum mark: 7]

Events A and B are such that $\mathrm{P}(A)=0.2$ and $\mathrm{P}(B)=0.5$.
(a) Determine the value of $\mathrm{P}(A \cup B)$ when
(i) A and B are mutually exclusive;
(ii) A and B are independent.
(b) Find the smallest and largest possible values of $\mathrm{P}(A \mid B)$.
\qquad
5. [Maximum mark: 6]

By using the substitution $u=1+\sqrt{x}$, find $\int \frac{\sqrt{x}}{1+\sqrt{x}} \mathrm{~d} x$.
\qquad
6. [Maximum mark: 7]

Use mathematical induction to prove that $(2 n)!\geq 2^{n}(n!)^{2}, n \in \mathbb{Z}^{+}$.
\qquad
7. [Maximum mark: 7]

A continuous random variable T has probability density function f defined by

$$
f(t)=\left\{\begin{array}{r}
|2-t|, 1 \leq t \leq 3 \\
0, \text { otherwise } .
\end{array}\right.
$$

(a) Sketch the graph of $y=f(t)$.
(b) (i) Find the lower quartile of T.
(ii) Hence find the interquartile range of T.
\qquad
8. [Maximum mark: 7]

A set of positive integers $\{1,2,3,4,5,6,7,8,9\}$ is used to form a pack of nine cards. Each card displays one positive integer without repetition from this set. Grace wishes to select four cards at random from this pack of nine cards.
(a) Find the number of selections Grace could make if the largest integer drawn among the four cards is either a 5 , a 6 or a 7 .
(b) Find the number of selections Grace could make if at least two of the four integers drawn are even.
\qquad

Do not write solutions on this page.

Section B

Answer all questions in the answer booklet provided. Please start each question on a new page.
9. [Maximum mark: 17]

The function f is defined as $f(x)=\mathrm{e}^{3 x+1}, x \in \mathbb{R}$.
(a) Find $f^{-1}(x)$.

The function g is defined as $g(x)=\ln x, x \in \mathbb{R}^{+}$.
The graph of $y=g(x)$ intersects the x-axis at the point Q .
(b) Show that the equation of the tangent T to the graph of $y=g(x)$ at the point Q is $y=x-1$.

A region R is bounded by the graphs of $y=g(x)$, the tangent T and the line $x=\mathrm{e}$.
(c) Find the area of the region R.
(d) (i) Show that $g(x) \leq x-1, x \in \mathbb{R}^{+}$.
(ii) By replacing x with $\frac{1}{x}$ in part (d)(i), show that $\frac{x-1}{x} \leq g(x), x \in \mathbb{R}^{+}$.

Do not write solutions on this page.
10. [Maximum mark: 14]

The position vectors of the points A, B and C are $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c} respectively, relative to an origin O . The following diagram shows the triangle ABC and points $\mathrm{M}, \mathrm{R}, \mathrm{S}$ and T .

M is the mid-point of [AC].
R is a point on $[A B]$ such that $\overrightarrow{A R}=\frac{1}{3} \overrightarrow{A B}$.
S is a point on $[\mathrm{AC}]$ such that $\overrightarrow{\mathrm{AS}}=\frac{2}{3} \overrightarrow{\mathrm{AC}}$.
T is a point on $[\mathrm{RS}]$ such that $\overrightarrow{\mathrm{RT}}=\frac{2}{3} \overrightarrow{\mathrm{RS}}$.
(a) (i) Express $\overrightarrow{\mathrm{AM}}$ in terms of \boldsymbol{a} and \boldsymbol{c}.
(ii) Hence show that $\overrightarrow{\mathrm{BM}}=\frac{1}{2} \boldsymbol{a}-\boldsymbol{b}+\frac{1}{2} \boldsymbol{c}$.
(b) (i) Express $\overrightarrow{\mathrm{RA}}$ in terms of \boldsymbol{a} and \boldsymbol{b}.
(ii) Show that $\overrightarrow{\mathrm{RT}}=-\frac{2}{9} \boldsymbol{a}-\frac{2}{9} \boldsymbol{b}+\frac{4}{9} \boldsymbol{c}$.
(c) Prove that T lies on $[\mathrm{BM}]$.

Do not write solutions on this page.
11. [Maximum mark: 19]
(a) Show that $(1+\mathrm{i} \tan \theta)^{n}+(1-\mathrm{i} \tan \theta)^{n}=\frac{2 \cos n \theta}{\cos ^{n} \theta}, \cos \theta \neq 0$.
(b) (i) Use the double angle identity $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$ to show that $\tan \frac{\pi}{8}=\sqrt{2}-1$.
(ii) Show that $\cos 4 x=8 \cos ^{4} x-8 \cos ^{2} x+1$.
(iii) Hence find the value of $\int_{0}^{\frac{\pi}{8}} \frac{2 \cos 4 x}{\cos ^{2} x} \mathrm{~d} x$.

Markscheme

Specimen (adapted from November 2014)

Mathematics

Higher level

Paper 1

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to $\mathrm{RM}^{\text {M }}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking May 2016". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the 'must be seen' marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by $\mathrm{RM}^{\mathrm{TM}}$ Assessor.

Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M O}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, for example, M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (for example, substitution into a formula) and A1 for using the correct values.
- Where the markscheme specifies (M2), N3, etc, do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$. (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets, for example, (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (for example, $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Misread

If a candidate incorrectly copies information from the question, this is a misread (MR).
A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the MR leads to an inappropriate value (for example, $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER... OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
$$

Award $\boldsymbol{A} \mathbf{1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

14 Candidate work

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. This work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

Section A

1. (a) $g(x)=\frac{1}{x+3}+1$

Note: Award $\boldsymbol{A 1}$ for $x+3$ in the denominator and $\boldsymbol{A 1}$ for the " +1 ".
(b) $x=-3$

A1
$y=1$
A1
[2 marks]

Total [4 marks]

2. (a) using the formulae for the sum and product of roots:
(i) $\alpha+\beta=4$
A1
(ii) $\quad \alpha \beta=\frac{1}{2}$
A1

Note: Award AOAO if the above results are obtained by solving the original equation (except for the purpose of checking).
[2 marks]
(b) METHOD 1
required quadratic is of the form $x^{2}-\left(\frac{2}{\alpha}+\frac{2}{\beta}\right) x+\left(\frac{2}{\alpha}\right)\left(\frac{2}{\beta}\right)$
$q=\frac{4}{\alpha \beta}$
$q=8$
A1
$p=-\left(\frac{2}{\alpha}+\frac{2}{\beta}\right)$
$=-\frac{2(\alpha+\beta)}{\alpha \beta}$
$=-\frac{2 \times 4}{\frac{1}{2}}$
$p=-16$
Note: Accept the use of exact roots.
continued...

Question 2 continued

METHOD 2

replacing X with $\frac{2}{x}$
$2\left(\frac{2}{x}\right)^{2}-8\left(\frac{2}{x}\right)+1=0$
$\frac{8}{x^{2}}-\frac{16}{x}+1=0$
$x^{2}-16 x+8=0$
$p=-16$ and $q=8$
Note: Award A1A0 for $x^{2}-16 x+8=0$ ie, if $p=-16$ and $q=8$ are not explicitly stated.
3. (a) $|\overrightarrow{\mathrm{OP}}|^{2}=(1+s)^{2}+(3+2 s)^{2}+(1-s)^{2}$

A1
AG
[1 mark]
(b) attempt to differentiate: $\frac{d}{d s}|\overrightarrow{\mathrm{OP}}|^{2}(=12 s+12)$
attempt to solve: $\frac{d}{d s}|\overrightarrow{\mathrm{OP}}|^{2}=0$ for s
(M1)
$s=-1$
A1
the minimum length of $\overrightarrow{\mathrm{OP}}$ is $\sqrt{5}$
A1
[4 marks]
(c) (The point P is restricted to a line)
a line has a unique point of closest approach to the origin, but no maximum
4. (a) (i) use of $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)$
$\mathrm{P}(A \cup B)=0.2+0.5$
$=0.7$
(ii) use of $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A) \mathrm{P}(B)$
$\mathrm{P}(A \cup B)=0.2+0.5-0.1$
$=0.6$
(b) $\quad \mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}$
$\mathrm{P}(A \mid B)$ is a minimum when $A \cap B=\phi \quad(\mathrm{P}(A \cap B)=0)$
R1
$\mathrm{P}(A \mid B)$ is a maximum when $A \subseteq B \quad(\mathrm{P}(A \cap B)=\mathrm{P}(A))$ R1
\min value $=0$, max value $=0.4$

A1
[3 marks]
Total [7 marks]
5. $\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{2 \sqrt{x}}$
$\mathrm{d} x=2(u-1) \mathrm{d} u$
Note: Award the $\boldsymbol{A 1}$ for any correct relationship between $\mathrm{d} x$ and $\mathrm{d} u$.

$$
\int \frac{\sqrt{x}}{1+\sqrt{x}} \mathrm{~d} x=2 \int \frac{(u-1)^{2}}{u} \mathrm{~d} u
$$

(M1)A1

Note: Award the $\boldsymbol{M 1}$ for an attempt at substitution resulting in an integral only involving u.

$$
\begin{align*}
& =2 \int u-2+\frac{1}{u} \mathrm{~d} u \tag{A1}\\
& =u^{2}-4 u+2 \ln u(+C) \tag{A1}\\
& =x-2 \sqrt{x}-3+2 \ln (1+\sqrt{x})(+C)
\end{align*}
$$

Note: Award the A1 for a correct expression in x, but not necessarily fully expanded/simplified.
6. let $\mathrm{P}(n)$ be the proposition that $(2 n)!\geq 2^{n}(n!)^{2}, n \in \mathbb{Z}^{+}$
consider $\mathrm{P}(1)$:
$2!=2$ and $2^{1}(1!)^{2}=2$ so $P(1)$ is true
assume $P(k)$ is true ie $(2 k)!\geq 2^{k}(k!)^{2}, k \in \mathbb{Z}^{+}$
Note: Do not award M1 for statements such as "let $n=k$ ".
consider $\mathrm{P}(k+1)$:
$(2(k+1))!=(2 k+2)(2 k+1)(2 k)!$
$(2(k+1))!\geq(2 k+2)(2 k+1)(k!)^{2} 2^{k}$ A1

Note: Condone "working backwards" up to this point, but no further unless it is fully justified.

$$
=2(k+1)(2 k+1)(k!)^{2} 2^{k}
$$

$>2^{k+1}(k+1)(k+1)(k!)^{2}$ since $2 k+1>k+1$
$=2^{k+1}((k+1)!)^{2}$
$\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true and $\mathrm{P}(1)$ is true, so $\mathrm{P}(n)$ is true for $n \in \mathbb{Z}^{+} \boldsymbol{R} \mathbf{1}$
Note: To obtain the final R1, four of the previous marks must have been awarded.
7. (a)

$|2-t|$ correct for $[1,2]$
$|2-t|$ correct for $[2,3]$
(b) (i) let Q_{1} be the lower quartile

$$
\begin{aligned}
& \text { consider } \int_{1}^{q_{1}}(2-t) d t=\frac{1}{4} \\
& \text { obtain } q_{1}=2-\frac{1}{\sqrt{2}}
\end{aligned}
$$

Question 7 continued
$\begin{array}{ll}\text { (ii) by symmetry, for example, } q_{3}=2+\frac{1}{\sqrt{2}} & \boldsymbol{A 1} \\ \text { hence } \mathrm{IQR}=\sqrt{2} & \boldsymbol{A 1}\end{array}$
Note: Only accept this final answer for the A1.
[5 marks]

Total [7 marks]

8. (a) use of the addition principle with 3 terms
to obtain ${ }^{4} C_{3}+{ }^{5} C_{3}+{ }^{6} C_{3}(=4+10+20)$
A1
number of possible selections is 34
A1
[3 marks]

(b) EITHER

recognition of three cases: (2 odd and 2 even or 1 odd and 3 even or 0 odd and 4 even)
$\left({ }^{5} C_{2} \times{ }^{4} C_{2}\right)+\left({ }^{5} C_{1} \times{ }^{4} C_{3}\right)+\left({ }^{5} C_{0} \times{ }^{4} C_{4}\right)(=60+20+1)$
OR
recognition to subtract the sum of 4 odd and 3 odd and 1 even from the total
${ }^{9} C_{4}-{ }^{5} C_{4}-\left({ }^{5} C_{3} \times{ }^{4} C_{1}\right)(=126-5-40)$
(M1)A1

THEN

number of possible selections is 81

A1
[4 marks]

Section B

9. (a) $x=e^{3 y+1}$

Notes: The M1 is for switching variables and can be awarded at any stage. Further marks do not rely on this mark being awarded.
taking the natural logarithm of both sides and attempting to transpose
$\left(f^{-1}(x)\right)=\frac{1}{3}(\ln x-1)$
(b) coordinates of Q are $(1,0)$ seen anywhere
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x}$
at $\mathrm{Q}, \frac{\mathrm{d} y}{\mathrm{~d} x}=1$
$y=x-1$
(c) let the required area be A

$$
A=\int_{1}^{e} x-1 \mathrm{~d} x-\int_{1}^{e} \ln x \mathrm{~d} x
$$

Notes: The M1 is for a difference of integrals. Condone absence of limits here.
attempting to use integration by parts to find $\int \ln x \mathrm{~d} x$

$$
=\left[\frac{x^{2}}{2}-x\right]_{1}^{\mathrm{e}}-[x \ln x-x]_{1}^{\mathrm{e}}
$$

A1A1

Note: Award $\boldsymbol{A 1}$ for $\frac{x^{2}}{2}-x$ and $\mathbf{A 1}$ for $x \ln x-x$.
Note: The second $\boldsymbol{M 1}$ and second $\boldsymbol{A 1}$ are independent of the first $\boldsymbol{M 1}$ and the first $\boldsymbol{A 1}$.

$$
=\frac{\mathrm{e}^{2}}{2}-\mathrm{e}-\frac{1}{2}\left(=\frac{\mathrm{e}^{2}-2 \mathrm{e}-1}{2}\right)
$$

Question 9 continued

(d) (i) METHOD 1

consider for example $h(x)=x-1-\ln x$
$h(1)=0$ and $h^{\prime}(x)=1-\frac{1}{x}$
as $h^{\prime}(x) \geq 0$ for $x \geq 1$, then $h(x) \geq 0$ for $x \geq 1$
as $h^{\prime}(x) \leq 0$ for $0<x \leq 1$, then $h(x) \geq 0$ for $0<x \leq 1$
so $g(x) \leq x-1, x \in \mathbb{R}^{+}$

METHOD 2

$g^{\prime \prime}(x)=-\frac{1}{x^{2}}$
$g^{\prime \prime}(x)<0$ (concave down) for $x \in \mathbb{R}^{+}$
the graph of $y=g(x)$ is below its tangent $(y=x-1$ at $x=1)$
so $g(x) \leq x-1, x \in \mathbb{R}^{+}$
Note: The reasoning may be supported by drawn graphical arguments.
METHOD 3

clear correct graphs of $y=x-1$ and $\ln x$ for $x>0$
statement to the effect that the graph of $\ln x$ is below the graph of its tangent at $x=1$

Question 9 continued
(ii) replacing x by $\frac{1}{x}$ to obtain $\ln \left(\frac{1}{x}\right) \leq \frac{1}{x}-1\left(=\frac{1-x}{x}\right)$
$-\ln x \leq \frac{1}{x}-1\left(=\frac{1-x}{x}\right)$
$\ln x \geq 1-\frac{1}{x}\left(=\frac{x-1}{x}\right)$
so $\frac{x-1}{x} \leq g(x), x \in \mathbb{R}^{+}$
10. (a) (i) $\overrightarrow{\mathrm{AM}}=\frac{1}{2} \overrightarrow{\mathrm{AC}}$

$$
=\frac{1}{2}(\boldsymbol{c}-\boldsymbol{a})
$$

(ii) $\quad \overrightarrow{\mathrm{BM}}=\overrightarrow{\mathrm{BA}}+\overrightarrow{\mathrm{AM}}$
$=\boldsymbol{a}-\boldsymbol{b}+\frac{1}{2}(\boldsymbol{c}-\boldsymbol{a})$
$\overrightarrow{\mathrm{BM}}=\frac{1}{2} \boldsymbol{a}-\boldsymbol{b}+\frac{1}{2} \boldsymbol{c}$
(b) (i) $\overrightarrow{\mathrm{RA}}=\frac{1}{3} \overrightarrow{\mathrm{BA}}$

$$
=\frac{1}{3}(\boldsymbol{a}-\boldsymbol{b})
$$

(ii) $\quad \overrightarrow{\mathrm{RT}}=\frac{2}{3} \overrightarrow{\mathrm{RS}}$

$$
\begin{aligned}
& =\frac{2}{3}(\overrightarrow{\mathrm{RA}}+\overrightarrow{\mathrm{AS}}) \\
& =\frac{2}{3}\left(\frac{1}{3}(\boldsymbol{a}-\boldsymbol{b})+\frac{2}{3}(\boldsymbol{c}-\boldsymbol{a})\right) \text { or equivalent } \\
& =\frac{2}{9}(\boldsymbol{a}-\boldsymbol{b})+\frac{4}{9}(\boldsymbol{c}-\boldsymbol{a}) \\
& \overrightarrow{\mathrm{RT}}=-\frac{2}{9} \boldsymbol{a}-\frac{2}{9} \boldsymbol{b}+\frac{4}{9} \boldsymbol{c}
\end{aligned}
$$

Question 10 continued
(c) $\quad \overrightarrow{\mathrm{BT}}=\overrightarrow{\mathrm{BR}}+\overrightarrow{\mathrm{RT}}$

$$
\begin{align*}
& =\frac{2}{3} \overrightarrow{\mathrm{BA}}+\overrightarrow{\mathrm{RT}} \tag{M1}\\
& =\frac{2}{3} \boldsymbol{a}-\frac{2}{3} \boldsymbol{b}-\frac{2}{9} \boldsymbol{a}-\frac{2}{9} \boldsymbol{b}+\frac{4}{9} \boldsymbol{c} \\
& \overrightarrow{\mathrm{BT}}=\frac{8}{9}\left(\frac{1}{2} \boldsymbol{a}-\boldsymbol{b}+\frac{1}{2} \boldsymbol{c}\right)
\end{align*}
$$

point B is common to $\overrightarrow{\mathrm{BT}}$ and $\overrightarrow{\mathrm{BM}}$ and $\overrightarrow{\mathrm{BT}}=\frac{8}{9} \overrightarrow{\mathrm{BM}}$
so T lies on [BM]
AG
11. (a) METHOD 1
$(1+\mathrm{i} \tan \theta)^{n}+(1-\mathrm{i} \tan \theta)^{n}=\left(1+\mathrm{i} \frac{\sin \theta}{\cos \theta}\right)^{n}+\left(1-\mathrm{i} \frac{\sin \theta}{\cos \theta}\right)^{n}$
$=\left(\frac{\cos \theta+\mathrm{i} \sin \theta}{\cos \theta}\right)^{n}+\left(\frac{\cos \theta-\mathrm{i} \sin \theta}{\cos \theta}\right)^{n}$
A1
by de Moivre's theorem
$\left(\frac{\cos \theta+\mathrm{i} \sin \theta}{\cos \theta}\right)^{n}=\frac{\cos n \theta+\mathrm{i} \sin n \theta}{\cos ^{n} \theta}$
recognition that $\cos \theta-i \sin \theta$ is the complex conjugate
of $\cos \theta+\mathrm{i} \sin \theta$
use of the fact that the operation of complex conjugation commutes with the operation of raising to an integer power
$\left(\frac{\cos \theta-\mathrm{i} \sin \theta}{\cos \theta}\right)^{n}=\frac{\cos n \theta-\mathrm{i} \sin n \theta}{\cos ^{n} \theta}$
$(1+\mathrm{i} \tan \theta)^{n}+(1-\mathrm{i} \tan \theta)^{n}=\frac{2 \cos n \theta}{\cos ^{n} \theta}$
continued...

Question 11 continued

METHOD 2

$$
\begin{align*}
& (1+\mathrm{i} \tan \theta)^{n}+(1-\mathrm{i} \tan \theta)^{n}=(1+\mathrm{i} \tan \theta)^{n}+(1+\mathrm{i} \tan (-\theta))^{n} \tag{M1}\\
& =\frac{(\cos \theta+\mathrm{i} \sin \theta)^{n}}{\cos ^{n} \theta}+\frac{(\cos (-\theta)+\mathrm{i} \sin (-\theta))^{n}}{\cos ^{n} \theta}
\end{align*}
$$

Note: Award M1 for converting to cosine and sine terms.
use of de Moivre's theorem
$=\frac{1}{\cos ^{n} \theta}(\cos n \theta+\mathrm{i} \sin n \theta+\cos (-n \theta)+\mathrm{i} \sin (-n \theta))$
$=\frac{2 \cos n \theta}{\cos ^{n} \theta}$ as $\cos (-n \theta)=\cos n \theta$ and $\sin (-n \theta)=-\sin n \theta$
(b) (i) $\tan \frac{\pi}{4}=\frac{2 \tan \frac{\pi}{8}}{1-\tan ^{2} \frac{\pi}{8}}$
$\tan ^{2} \frac{\pi}{8}+2 \tan \frac{\pi}{8}-1=0$
let $t=\tan \frac{\pi}{8}$
attempting to solve $t^{2}+2 t-1=0$ for t
$t=-1 \pm \sqrt{2}$
$\frac{\pi}{8}$ is a first quadrant angle and tan is positive in this quadrant,
so $\tan \frac{\pi}{8}>0$
$\tan \frac{\pi}{8}=\sqrt{2}-1$ AG
(ii) $\cos 4 x=2 \cos ^{2} 2 x-1$
$=2\left(2 \cos ^{2} x-1\right)^{2}-1 \quad$ M1
$=2\left(4 \cos ^{4} x-4 \cos ^{2} x+1\right)-1 \quad$ A1
$=8 \cos ^{4} x-8 \cos ^{2} x+1 \quad$ AG
Note: Accept equivalent complex number derivation.
continued...

Question 11 continued
(iii) $\int_{0}^{\frac{\pi}{8}} \frac{2 \cos 4 x}{\cos ^{2} x} \mathrm{~d} x=2 \int_{0}^{\frac{\pi}{8}} \frac{8 \cos ^{4} x-8 \cos ^{2} x+1}{\cos ^{2} x} \mathrm{~d} x$
$=2 \int_{0}^{\frac{\pi}{8}} 8 \cos ^{2} x-8+\sec ^{2} x \mathrm{~d} x$
Note: The M1 is for an integrand involving no fractions.

$$
\begin{array}{ll}
\text { use of } \cos ^{2} x=\frac{1}{2}(\cos 2 x+1) & \text { M1 } \\
=2 \int_{0}^{\frac{\pi}{8}} 4 \cos 2 x-4+\sec ^{2} x \mathrm{~d} x & \text { A1 } \\
=[4 \sin 2 x-8 x+2 \tan x]_{0}^{\frac{\pi}{8}} & \text { A1 } \\
=4 \sqrt{2}-\pi-2 \text { (or equivalent) } & \text { A1 }
\end{array}
$$

[13 marks]

Mathematics
 Higher level
 Paper 2

SPECIMEN (adapted from November 2014)
Candidate session number
2 hours \square

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Section A: answer all questions. Answers must be written within the answer boxes provided.
- Section B: answer all questions in the answer booklet provided. Fill in your session number on the front of the answer booklet, and attach it to this examination paper and your cover sheet using the tag provided.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A clean copy of the mathematics HL and further mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [100 marks].

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A

Answer all questions. Answers must be written within the answer boxes provided. Working may be continued below the lines, if necessary.

1. [Maximum mark: 6]

Consider the two planes

$$
\begin{aligned}
& \pi_{1}: 4 x+2 y-z=8 \\
& \pi_{2}: x+3 y+3 z=3 .
\end{aligned}
$$

Find the angle between π_{1} and π_{2}, giving your answer correct to the nearest degree.
\qquad
2. [Maximum mark: 6]

The wingspans of a certain species of bird can be modelled by a normal distribution with mean 60.2 cm and standard deviation 2.4 cm .

According to this model, 99% of wingspans are greater than $x \mathrm{~cm}$.
(a) Find the value of x.

In a field experiment, a research team studies a large sample of these birds. The wingspans of each bird are measured correct to the nearest 0.1 cm .
(b) Find the probability that a randomly selected bird has a wingspan measured as 60.2 cm .
\qquad
3. [Maximum mark: 8]

The lines l_{1} and l_{2} are defined as

$$
\begin{aligned}
& l_{1}: \frac{x-1}{3}=\frac{y-5}{2}=\frac{z-12}{-2} \\
& l_{2}: \frac{x-1}{8}=\frac{y-5}{11}=\frac{z-12}{6} .
\end{aligned}
$$

The plane π contains both l_{1} and l_{2}.
(a) Find the Cartesian equation of π.

The line l_{3} passing through the point $(4,0,8)$ is perpendicular to π.
(b) Find the coordinates of the point where l_{3} meets π.
\qquad
4. [Maximum mark: 6]

Consider $p(x)=3 x^{3}+a x+5 a, a \in \mathbb{R}$.
The polynomial $p(x)$ leaves a remainder of -7 when divided by $(x-a)$.
Show that only one value of a satisfies the above condition and state its value.
\qquad
5. [Maximum mark: 9]

The seventh, third and first terms of an arithmetic sequence form the first three terms of a geometric sequence.

The arithmetic sequence has first term a and non-zero common difference d.
(a) Show that $d=\frac{a}{2}$.

The seventh term of the arithmetic sequence is 3 . The sum of the first n terms in the arithmetic sequence exceeds the sum of the first n terms in the geometric sequence by at least 200.
(b) Find the least value of n for which this occurs.
\qquad
6. [Maximum mark: 7]

A particle moves in a straight line such that its velocity, $v \mathrm{~m} \mathrm{~s}^{-1}$, at time t seconds, is given by

$$
v(t)=\left\{\begin{array}{rr}
5-(t-2)^{2}, & 0 \leq t \leq 4 \\
3-\frac{t}{2}, & t>4
\end{array}\right.
$$

(a) Find the value of t when the particle is instantaneously at rest.

The particle returns to its initial position at $t=T$.
(b) Find the value of T.
\qquad
7. [Maximum mark: 8]

Compactness is a measure of how compact an enclosed region is.
The compactness, C, of an enclosed region can be defined by $C=\frac{4 A}{\pi d^{2}}$, where A is the area of the region and d is the maximum distance between any two points in the region.

For a circular region, $C=1$.
Consider a regular polygon of n sides constructed such that its vertices lie on the circumference of a circle of diameter x units.
(a) If $n>2$ and even, show that $C=\frac{n}{2 \pi} \sin \frac{2 \pi}{n}$.

If $n>1$ and odd, it can be shown that $C=\frac{n \sin \frac{2 \pi}{n}}{\pi\left(1+\cos \frac{\pi}{n}\right)}$.
(b) Find the regular polygon with the least number of sides for which the compactness is more than 0.99.
(c) Comment briefly on whether C is a good measure of compactness.
\qquad

Do not write solutions on this page.

Section B

Answer all questions in the answer booklet provided. Please start each question on a new page.
8. [Maximum mark: 12]

Consider the triangle PQR where $\mathrm{Q} \hat{\mathrm{P} R}=30^{\circ}, \mathrm{PQ}=(x+2) \mathrm{cm}$ and $\mathrm{PR}=(5-x)^{2} \mathrm{~cm}$, where $-2<x<5$.
(a) Show that the area, $A \mathrm{~cm}^{2}$, of the triangle is given by $A=\frac{1}{4}\left(x^{3}-8 x^{2}+5 x+50\right)$.
(b) (i) State $\frac{\mathrm{d} A}{\mathrm{~d} x}$.
(ii) Verify that $\frac{\mathrm{d} A}{\mathrm{~d} x}=0$ when $x=\frac{1}{3}$.
(c) (i) Find $\frac{\mathrm{d}^{2} A}{\mathrm{~d} x^{2}}$ and hence justify that $x=\frac{1}{3}$ gives the maximum area of triangle PQR .
(ii) State the maximum area of triangle PQR .
(iii) Find QR when the area of triangle PQR is a maximum.

Do not write solutions on this page.
9. [Maximum mark: 10]

The number of complaints per day received by customer service at a department store follows a Poisson distribution with a mean of 0.6 .
(a) On a randomly chosen day, find the probability that
(i) there are no complaints;
(ii) there are at least three complaints.
(b) In a randomly chosen five-day week, find the probability that there are no complaints.
(c) On a randomly chosen day, find the most likely number of complaints received. Justify your answer.

The department store introduces a new policy to improve customer service. The number of complaints received per day now follows a Poisson distribution with mean λ.

On a randomly chosen day, the probability that there are no complaints is now 0.8 .
(d) Find the value of λ.

Do not write solutions on this page.
10. [Maximum mark: 17]

The vertical cross-section of a container is shown in the following diagram.

The curved sides of the cross-section are given by the equation $y=0.25 x^{2}-16$. The horizontal cross-sections are circular. The depth of the container is 48 cm .
(a) If the container is filled with water to a depth of $h \mathrm{~cm}$, show that the volume, $V \mathrm{~cm}^{3}$, of the water is given by $V=4 \pi\left(\frac{h^{2}}{2}+16 h\right)$.

(This question continues on the following page)

Do not write solutions on this page.

(Question 10 continued)

The container, initially full of water, begins leaking from a small hole at a rate given by $\frac{\mathrm{d} V}{\mathrm{~d} t}=-\frac{250 \sqrt{h}}{\pi(h+16)}$ where t is measured in seconds.
(b) (i) Show that $\frac{\mathrm{d} h}{\mathrm{~d} t}=-\frac{250 \sqrt{h}}{4 \pi^{2}(h+16)^{2}}$.
(ii) State $\frac{\mathrm{d} t}{\mathrm{~d} h}$ and hence show that $t=\frac{-4 \pi^{2}}{250} \int\left(h^{\frac{3}{2}}+32 h^{\frac{1}{2}}+256 h^{-\frac{1}{2}}\right) \mathrm{d} h$.
(iii) Find, correct to the nearest minute, the time taken for the container to become empty. (60 seconds $=1$ minute)

Once empty, water is pumped back into the container at a rate of $8.5 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. At the same time, water continues leaking from the container at a rate of $\frac{250 \sqrt{h}}{\pi(h+16)} \mathrm{cm}^{3} \mathrm{~s}^{-1}$.
(c) Using an appropriate sketch graph, determine the depth at which the water ultimately stabilizes in the container.

Do not write solutions on this page.
11. [Maximum mark: 11]

In triangle ABC ,

$$
\begin{aligned}
& 3 \sin B+4 \cos C=6 \text { and } \\
& 4 \sin C+3 \cos B=1 .
\end{aligned}
$$

(a) Show that $\sin (B+C)=\frac{1}{2}$.

Robert conjectures that $C \hat{A} B$ can have two possible values.
(b) Show that Robert's conjecture is incorrect by proving that $C \hat{A} B$ has only one possible value.

Please do not write on this page.
Answers written on this page will not be marked.

Please do not write on this page.
Answers written on this page will not be marked.

Markscheme

Specimen (adapted from November 2014)

Mathematics

Higher level

Paper 2

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to $\mathrm{RM}^{\text {M }}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking May 2016". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the 'must be seen' marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by $\mathrm{RM}^{\mathrm{TM}}$ Assessor.

Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, for example, M1A1, this usually means M1 for an attempt to use an appropriate method (for example, substitution into a formula) and A1 for using the correct values.
- Where the markscheme specifies (M2), N3, etc, do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$. (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets, for example, (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (for example, $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Misread

If a candidate incorrectly copies information from the question, this is a misread (MR).
A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\mathbf{M R}$, then use discretion to award fewer marks.
- If the MR leads to an inappropriate value (for example, $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER... OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

14 Candidate work

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. This work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

Section A

1. $\boldsymbol{n}_{1}=\left(\begin{array}{c}4 \\ 2 \\ -1\end{array}\right)$ and $\boldsymbol{n}_{2}=\left(\begin{array}{l}1 \\ 3 \\ 3\end{array}\right)$
(A1)(A1)
use of $\cos \theta=\frac{\boldsymbol{n}_{1} \cdot \boldsymbol{n}_{2}}{\left|\boldsymbol{n}_{1}\right|\left|\boldsymbol{n}_{2}\right|}$
$\cos \theta=\frac{7}{\sqrt{21} \sqrt{19}}\left(=\frac{7}{\sqrt{399}}\right)$
(A1)(A1)

Note: Award A1 for a correct numerator and A1 for a correct denominator.

$$
\theta=69^{\circ}
$$

Note: Award $\mathbf{A 1}$ for 111°.
2. (a) $\mathrm{P}(X>x)=0.99(=\mathrm{P}(X<x)=0.01)$ (M1)
$\Rightarrow x=54.6(\mathrm{~cm})$
A1
[2 marks]
(b) $\mathrm{P}(60.15 \leq X \leq 60.25)$

$$
=0.0166
$$

(M1)(A1)(A1)
A1
[4 marks]
Total [6 marks]
3. (a) attempting to find a normal to π eg $\left(\begin{array}{c}3 \\ 2 \\ -2\end{array}\right) \times\left(\begin{array}{c}8 \\ 11 \\ 6\end{array}\right)$

$$
\left(\begin{array}{c}
3 \\
2 \\
-2
\end{array}\right) \times\left(\begin{array}{c}
8 \\
11 \\
6
\end{array}\right)=17\left(\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right)
$$

$$
r \cdot\left(\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right)=\left(\begin{array}{c}
1 \\
5 \\
12
\end{array}\right) \cdot\left(\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right)
$$

$$
2 x-2 y+z=4 \text { (or equivalent) }
$$

M1

A1
[4 marks]

Question 3 continued
(b) $l_{3}: \boldsymbol{r}=\left(\begin{array}{l}4 \\ 0 \\ 8\end{array}\right)+t\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right), t \in \mathbb{R}$
$\begin{array}{ll}\text { attempting to solve }\left(\begin{array}{c}4+2 t \\ -2 t \\ 8+t\end{array}\right) \cdot\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right)=4 \text { for } t \text { ie } 9 t+16=4 \text { for } t & \text { M1 } \\ t=-\frac{4}{3} & \boldsymbol{A 1} \\ \left(\frac{4}{3}, \frac{8}{3}, \frac{20}{3}\right) & \text { A1 }\end{array}$
[4 marks]
Total [8 marks]
4. using $p(a)=-7$ to obtain $3 a^{3}+a^{2}+5 a+7=0$
$(a+1)\left(3 a^{2}-2 a+7\right)=0$ (M1)(A1)

Note: Award M1 for a cubic graph with correct shape and A1 for clearly showing that the above cubic crosses the horizontal axis at $(-1,0)$ only.
$a=-1$

EITHER

showing that $3 a^{2}-2 a+7=0$ has no real (two complex) solutions for a
OR
showing that $3 a^{3}+a^{2}+5 a+7=0$ has one real (and two complex)
solutions for a
Note: Award R1 for solutions that make specific reference to an appropriate graph.
5. (a) using $r=\frac{u_{2}}{u_{1}}=\frac{u_{3}}{u_{2}}$ to form $\frac{a+2 d}{a+6 d}=\frac{a}{a+2 d}$
$a(a+6 d)=(a+2 d)^{2} \quad$ A1
$2 d(2 d-a)=0$ (or equivalent) A1
since $d \neq 0 \Rightarrow d=\frac{a}{2}$
(b) substituting $d=\frac{a}{2}$ into $a+6 d=3$ and solving for a and d
$a=\frac{3}{4}$ and $d=\frac{3}{8}$
$r=\frac{1}{2}$
$\frac{n}{2}\left(2 \times \frac{3}{4}+(n-1) \frac{3}{8}\right)-\frac{3\left(1-\left(\frac{1}{2}\right)^{n}\right)}{1-\frac{1}{2}} \geq 200$
attempting to solve for n
$n \geq 31.68$...
so the least value of n is 32
6. (a) $3-\frac{t}{2}=0 \Rightarrow t=6$ (s)
(M1)A1
[2 marks]
Note: Award AO if either $t=-0.236$ or $t=4.24$ or both are stated with $t=6$.
(b) let d be the distance travelled before coming to rest
$d=\int_{0}^{4} 5-(t-2)^{2} \mathrm{~d} t+\int_{4}^{6} 3-\frac{t}{2} \mathrm{~d} t$
(M1)(A1)

Note: Award M1 for two correct integrals even if the integration limits are incorrect. The second integral can be specified as the area of a triangle.
$d=\frac{47}{3}(=15.7)(\mathrm{m})$
attempting to solve $\int_{6}^{T}\left(\frac{t}{2}-3\right) \mathrm{d} t=\frac{47}{3}$ (or equivalent) for T M1 $T=13.9$ (s)

A1

Total [7 marks]

7. (a) each triangle has area $\frac{1}{8} x^{2} \sin \frac{2 \pi}{n}$ (use of $\frac{1}{2} a b \sin C$)
there are n triangles so $A=\frac{1}{8} n x^{2} \sin \frac{2 \pi}{n}$
A1
$C=\frac{4\left(\frac{1}{8} n x^{2} \sin \frac{2 \pi}{n}\right)}{\pi x^{2}}$
A1
so $C=\frac{n}{2 \pi} \sin \frac{2 \pi}{n}$

AG

Question 7 continued
(b) attempting to find the least value of n such that $\frac{n}{2 \pi} \sin \frac{2 \pi}{n}>0.99$
$n=26$
attempting to find the least value of n such that $\frac{n \sin \frac{2 \pi}{n}}{\pi\left(1+\cos \frac{\pi}{n}\right)}>0.99$
$n=21$ and so a regular polygon with 21 sides
A1
Note: Award (MO)AO(M1)A1 if $\frac{n}{2 \pi} \sin \frac{2 \pi}{n}>0.99$ is not considered and $\frac{n \sin \frac{2 \pi}{n}}{\pi\left(1+\cos \frac{\pi}{n}\right)}>0.99$ is
correctly considered.
Award (M1)A1(MO)AO for $n=26$.
[4 marks]

(c) EITHER

for even and odd values of n, the value of C seems to increase towards the limiting value of the circle ($C=1$) ie as n increases, the polygonal regions get closer and closer to the enclosing circular region

OR
the differences between the odd and even values of n illustrate that this measure of compactness is not a good one

Section B

8. (a) use of $A=\frac{1}{2} q r \sin \theta$ to obtain $A=\frac{1}{2}(x+2)(5-x)^{2} \sin 30^{\circ}$

$$
\begin{aligned}
& =\frac{1}{4}(x+2)\left(25-10 x+x^{2}\right) \\
& A=\frac{1}{4}\left(x^{3}-8 x^{2}+5 x+50\right)
\end{aligned}
$$

(b) (i) $\frac{\mathrm{d} A}{\mathrm{~d} x}=\frac{1}{4}\left(3 x^{2}-16 x+5\right)\left(=\frac{1}{4}(3 x-1)(x-5)\right)$

(ii) METHOD 1

EITHER

$\frac{\mathrm{d} A}{\mathrm{~d} x}=\frac{1}{4}\left(3\left(\frac{1}{3}\right)^{2}-16\left(\frac{1}{3}\right)+5\right)=0$
OR
$\frac{\mathrm{d} A}{\mathrm{~d} x}=\frac{1}{4}\left(3\left(\frac{1}{3}\right)-1\right)\left(\left(\frac{1}{3}\right)-5\right)=0$
M1A1

THEN

so $\frac{\mathrm{d} A}{\mathrm{~d} x}=0$ when $x=\frac{1}{3}$
AG

METHOD 2
solving $\frac{\mathrm{d} A}{\mathrm{~d} x}=0$ for x
$-2<x<5 \Rightarrow x=\frac{1}{3}$
so $\frac{\mathrm{d} A}{\mathrm{~d} x}=0$ when $x=\frac{1}{3}$

METHOD 3

a correct graph of $\frac{\mathrm{d} A}{\mathrm{~d} x}$ versus x
the graph clearly showing that $\frac{\mathrm{d} A}{\mathrm{~d} x}=0$ when $x=\frac{1}{3}$
so $\frac{\mathrm{d} A}{\mathrm{~d} x}=0$ when $x=\frac{1}{3}$

Question 8 continued
(c) (i) $\frac{\mathrm{d}^{2} A}{\mathrm{~d} x^{2}}=\frac{1}{2}(3 x-8)$

A1
for $x=\frac{1}{3}, \frac{\mathrm{~d}^{2} A}{\mathrm{~d} x^{2}}=-3.5(<0)$
R1
so $x=\frac{1}{3}$ gives the maximum area of triangle PQR
AG
(ii) $\quad A_{\max }=\frac{343}{27}(=12.7)\left(\mathrm{cm}^{2}\right)$
(iii) $\mathrm{PQ}=\frac{7}{3}(\mathrm{~cm})$ and $\mathrm{PR}=\left(\frac{14}{3}\right)^{2}(\mathrm{~cm})$
$\mathrm{QR}^{2}=\left(\frac{7}{3}\right)^{2}+\left(\frac{14}{3}\right)^{4}-2\left(\frac{7}{3}\right)\left(\frac{14}{3}\right)^{2} \cos 30^{\circ}$ = 391.702...
$\mathrm{QR}=19.8(\mathrm{~cm})$

A1
(M1)(A1)

A1
[7 marks]
Total [12 marks]
9.
(a) (i) $\mathrm{P}(X=0)=0.549\left(=\mathrm{e}^{-0.6}\right)$
(ii) $\mathrm{P}(X \geq 3)=1-\mathrm{P}(X \leq 2)$
$\mathrm{P}(X \geq 3)=0.0231$
A1
[3 marks]
(b) EITHER
using $Y \sim \operatorname{Po}(3)$
(M1)
OR
using (0.549) ${ }^{5}$
(M1)

THEN

$\mathrm{P}(Y=0)=0.0498\left(=\mathrm{e}^{-3}\right)$

A1
[2 marks]
continued...

Question 9 continued
(c) $\quad \mathrm{P}(X=0)$ (most likely number of complaints received is zero)

EITHER

calculating $\mathrm{P}(X=0)=0.549$ and $\mathrm{P}(X=1)=0.329$

M1A1

OR

sketching an appropriate (discrete) graph of $\mathrm{P}(X=x)$ against x
M1A1
OR
finding $\mathrm{P}(X=0)=e^{-0.6}$ and stating that $\mathrm{P}(X=0)>0.5$

M1A1

OR

using $\mathrm{P}(X=x)=\mathrm{P}(X=x-1) \times \frac{\mu}{x}$ where $\mu<1$
M1A1
[3 marks]
(d) $\mathrm{P}(X=0)=0.8 \Rightarrow e^{-\lambda}=0.8$

$$
\begin{equation*}
\lambda=0.223\left(=\ln \frac{5}{4},=-\ln \frac{4}{5}\right) \tag{A1}
\end{equation*}
$$

A1
[2 marks]
Total [10 marks]
10. (a) attempting to use $V=\pi \int_{a}^{b} x^{2} \mathrm{~d} y$
attempting to express x^{2} in terms of y ie $x^{2}=4(y+16)$
for $y=h, V=4 \pi \int_{0}^{h} y+16 \mathrm{~d} y$ A1
$V=4 \pi\left(\frac{h^{2}}{2}+16 h\right)$ AG

Question 10 continued
(b) (i) METHOD 1

$$
\begin{align*}
& \frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\mathrm{d} h}{\mathrm{~d} V} \times \frac{\mathrm{d} V}{\mathrm{~d} t} \\
& \frac{\mathrm{~d} V}{\mathrm{~d} h}=4 \pi(h+16) \tag{A1}\\
& \frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{1}{4 \pi(h+16)} \times \frac{-250 \sqrt{h}}{\pi(h+16)}
\end{align*}
$$

M1A1

Note: Award $\boldsymbol{M} \boldsymbol{1}$ for substitution into $\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\mathrm{d} h}{\mathrm{~d} V} \times \frac{\mathrm{d} V}{\mathrm{~d} t}$.
$\frac{\mathrm{d} h}{\mathrm{~d} t}=-\frac{250 \sqrt{h}}{4 \pi^{2}(h+16)^{2}}$

METHOD 2

$\frac{\mathrm{d} V}{\mathrm{~d} t}=4 \pi(h+16) \frac{\mathrm{d} h}{\mathrm{~d} t}$ (implicit differentiation)
$\frac{-250 \sqrt{h}}{\pi(h+16)}=4 \pi(h+16) \frac{\mathrm{d} h}{\mathrm{~d} t}$ (or equivalent)
$\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{1}{4 \pi(h+16)} \times \frac{-250 \sqrt{h}}{\pi(h+16)}$

M1A1

$\frac{\mathrm{d} h}{\mathrm{~d} t}=-\frac{250 \sqrt{h}}{4 \pi^{2}(h+16)^{2}}$
(ii) $\frac{\mathrm{d} t}{\mathrm{~d} h}=-\frac{4 \pi^{2}(h+16)^{2}}{250 \sqrt{h}}$
$t=\int-\frac{4 \pi^{2}(h+16)^{2}}{250 \sqrt{h}} \mathrm{~d} h$
$t=\int-\frac{4 \pi^{2}\left(h^{2}+32 h+256\right)}{250 \sqrt{h}} \mathrm{~d} h$
$t=\frac{-4 \pi^{2}}{250} \int\left(h^{\frac{3}{2}}+32 h^{\frac{1}{2}}+256 h^{-\frac{1}{2}}\right) \mathrm{d} h$

Question 10 continued
(iii) METHOD 1

$$
\begin{aligned}
& t=\int_{48}^{0}\left(h^{\frac{3}{2}}+32 h^{\frac{1}{2}}+256 h^{-\frac{1}{2}}\right) \mathrm{d} h \\
& t=2688.756 \ldots \text { (s) } \\
& 45 \text { minutes (correct to the nearest minute) }
\end{aligned}
$$

METHOD 2

$$
\begin{aligned}
& t=\frac{-4 \pi^{2}}{250}\left(\frac{2}{5} h^{\frac{5}{2}}+\frac{64}{3} h^{\frac{3}{2}}+512 h^{\frac{1}{2}}\right)+c \\
& t=0, h=48 \Rightarrow c=2688.756 \ldots\left(c=\frac{4 \pi^{2}}{250}\left(\frac{2}{5} \times 48^{\frac{5}{2}}+\frac{64}{3} \times 48^{\frac{3}{2}}+512 \times 48^{\frac{1}{2}}\right)\right)
\end{aligned}
$$

$h=0, t=2688.756 \ldots\left(t=\frac{4 \pi^{2}}{250}\left(\frac{2}{5} \times 48^{\frac{5}{2}}+\frac{64}{3} \times 48^{\frac{3}{2}}+512 \times 48^{\frac{1}{2}}\right)\right)(\mathrm{s})$
45 minutes (correct to the nearest minute)

(c) EITHER

the depth stabilizes when $\frac{\mathrm{d} V}{\mathrm{~d} t}=0$ ie $8.5-\frac{250 \sqrt{h}}{\pi(h+16)}=0$
attempting to solve $8.5-\frac{250 \sqrt{h}}{\pi(h+16)}=0$ for h

OR

the depth stabilizes when $\frac{\mathrm{d} h}{\mathrm{~d} t}=0$ ie $\frac{1}{4 \pi(h+16)}\left(8.5-\frac{250 \sqrt{h}}{\pi(h+16)}\right)=0$
attempting to solve $\frac{1}{4 \pi(h+16)}\left(8.5-\frac{250 \sqrt{h}}{\pi(h+16)}\right)=0$ for h
(M1)

THEN

$$
h=5.06(\mathrm{~cm})
$$

A1
11. (a) squaring both equations

M1
$9 \sin ^{2} B+24 \sin B \cos C+16 \cos ^{2} C=36$
$9 \cos ^{2} B+24 \cos B \sin C+16 \sin ^{2} C=1$
adding the equations and using $\cos ^{2} \theta+\sin ^{2} \theta=1$ to obtain $9+24(\sin B \cos C+\cos B \sin C)+16=37$ M1
$24(\sin B \cos C+\cos B \sin C)=12$
$24 \sin (B+C)=12$
$\sin (B+C)=\frac{1}{2}$
(b) $\sin A=\sin \left(180^{\circ}-(B+C)\right)$ so $\sin A=\sin (B+C)$ R1
$\sin (B+C)=\frac{1}{2} \Rightarrow \sin A=\frac{1}{2}$
$\Rightarrow A=30^{\circ}$ or $A=150^{\circ}$
A1
A1
Note: Award R1A1A1 for obtaining $B+C=30^{\circ}$ or $B+C=150^{\circ}$.
if $A=150^{\circ}$, then $B<30^{\circ}$
R1
for example, $3 \sin B+4 \cos C<\left(\frac{3}{2}+4\right)<6$, ie a contradiction only one possible value $\left(A=30^{\circ}\right)$

Mathematics
 Higher level
 Paper 3 - discrete mathematics

SPECIMEN (adapted from November 2014)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the mathematics HL and further mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [50 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 8]

Let $f(n)=n^{5}-n, n \in \mathbb{Z}^{+}$.
(a) Find the values of $f(3)$ and $f(4)$.
(b) Use the Euclidean algorithm to find $\operatorname{gcd}(f(3), f(4))$.
(c) Use Fermat's Little Theorem to explain why $f(n)$ is always exactly divisible by 5 .
(d) By factorizing $f(n)$ explain why it is always exactly divisible by 6 .
2. [Maximum mark: 8]
(a) Use the pigeon-hole principle to prove that for any simple graph that has two or more vertices and in which every vertex is connected to at least one other vertex, there must be at least two vertices with the same degree.

Seventeen people attend a meeting.
(b) Each person shakes hands with at least one other person and no-one shakes hands with the same person more than once. Use the result from part (a) to show that there must be at least two people who shake hands with the same number of people.
3. [Maximum mark: 13]

The following graph represents the cost in dollars of travelling by bus between 10 towns in a particular province.

(a) Use Dijkstra's algorithm to find the cheapest route between A and J, and state its cost.

For the remainder of the question you may find the cheapest route between any two towns by inspection.

It is given that the total cost of travelling on all the roads without repeating any is $\$ 139$. A tourist decides to go over all the roads at least once, starting and finishing at town A.
(b) Find the lowest possible cost of his journey, stating clearly which roads need to be travelled more than once. You must fully justify your answer.
4. [Maximum mark: 10]
(a) Solve, by any method, the following system of linear congruences

$$
\begin{align*}
& x \equiv 9(\bmod 11) \\
& x \equiv 1(\bmod 5) . \tag{3}
\end{align*}
$$

(b) Find the remainder when 41^{82} is divided by 11 .
(c) Using your answers to parts (a) and (b) find the remainder when 41^{82} is divided by 55 .
5. [Maximum mark: 11]

Andy and Roger are playing tennis with the rule that if one of them wins a game when serving then he carries on serving, and if he loses then the other player takes over the serve.

The probability Andy wins a game when serving is $\frac{1}{2}$ and the probability he wins a game when not serving is $\frac{1}{4}$. Andy serves in the first game. Let u_{n} denote the probability that Andy wins the nth game.
(a) State the value of u_{1}.
(b) Show that u_{n} satisfies the recurrence relation

$$
u_{n}=\frac{1}{4} u_{n-1}+\frac{1}{4} .
$$

(c) Solve this recurrence relation to find the probability that Andy wins the nth game.

Markscheme

Specimen (adapted from November 2014)

Discrete mathematics

Higher level

Paper 3

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to $\mathrm{RM}^{\text {M }}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking May 2016". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by RM ${ }^{\text {TM }}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg $\boldsymbol{M 1 A 1}$, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.
Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$. (incorrect decimal value)	Award the final A1 (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (for example, $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Misread

If a candidate incorrectly copies information from the question, this is a misread (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the MR leads to an inappropriate value (for example, $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER... OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

Accuracy of Answers
Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution
Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) 240, 1020

A1
Note: Award $\boldsymbol{A} \mathbf{2}$ for three correct answers, $\boldsymbol{A} \mathbf{1}$ for two correct answers.
(b) $1020=240 \times 4+60$
$240=60 \times 4$
$\operatorname{gcd}(1020,240)=60$

Note: Must be done by Euclid's algorithm.
(c) by Fermat's little theorem with $p=5$
$n^{5} \equiv n(\bmod 5)$
A1
so 5 divides $f(n)$
[1 mark]
(d) $\quad f(n)=n\left(n^{2}-1\right)\left(n^{2}+1\right)=n(n-1)(n+1)\left(n^{2}+1\right)$
(A1)A1
$n-1, n, n+1$ are consecutive integers and so contain a multiple of 2 and 3

R1R1
Note: Award R1 for justification of 2 and $\boldsymbol{R 1}$ for justification of 3.
and therefore $f(n)$ is a multiple of 6
AG
[4 marks]
Total [8 marks]
2. (a) let there be v vertices in the graph; because the graph is simple the degree of each vertex is $\leq v-1$

A1
the degree of each vertex is $\geq 1 \quad$ A1
there are therefore $v-1$ possible values for the degree of each vertex A1
given there are v vertices by the pigeon-hole principle there must be at least two with the same degree
(b) consider a graph in which the people at the meeting are represented by the vertices and two vertices are connected if the two people shake hands
the graph is simple as no-one shakes hands with the same person more than once (nor can someone shake hands with themselves)
every vertex is connected to at least one other vertex as everyone shakes at least one hand
the degree of each vertex is the number of handshakes so by the proof above there must be at least two who shake the same number of hands

A1
[2 marks]
[1 mark]
(M1)
3. (a)

	A	B	C	D	E	F	G	H	I	J
A	0	0	-10	11	18					
B		10			17	21	23			
C			11							
D				17			24	22		
E					21					30
H								22	$\boxed{ }$	
F						23			29	
G							24		28	
J										27

(M1 for an attempt at Dijkstra's)
(A1 for value of $\mathrm{D}=17$)
(A1 for value of $\mathrm{H}=22$)
(A1 for value of $\mathrm{G}=24$)
route is ABDHJ
(M1)A1
cost is $\$ 27$
Note: Accept other layouts.
(b) there are 4 odd vertices A, D, F and J
these can be joined up in 3 ways with the following extra costs
AD and $\mathrm{FJ} \quad 17+13=30$
AF and DJ $23+10=33$
AJ and DF $27+12=39$
Notes: Award M1 for an attempt to find different routes.
Award A1A1 for correct values for all three costs $\mathbf{A 1}$ for one correct.
need to repeat $\mathrm{AB}, \mathrm{BD}, \mathrm{FG}$ and GJ
A1
total cost is $139+30=\$ 169$

A1
[6 marks]

4. (a) METHOD 1

listing $9,20,31, \ldots$ and $1,6,11,16,21,26,31, \ldots$
M1
one solution is 31
by the Chinese remainder theorem the full solution is $x \equiv 31(\bmod 55)$

A1 N2
METHOD 2
$x \equiv 9(\bmod 11) \Rightarrow x=9+11 t$
$\Rightarrow 9+11 t \equiv 1(\bmod 5)$
$\Rightarrow t \equiv 2(\bmod 5)$
A1
$\Rightarrow t=2+5 s$
$\Rightarrow x=9+11(2+5 s)$
$\Rightarrow x=31+55 s(\Rightarrow x \equiv 31(\bmod 55))$
Note: Accept other methods eg formula, Diophantine equation.
Note: Accept other equivalent answers eg -79(mod55).
(b) $41^{82} \equiv 8^{82}(\bmod 11)$
by Fermat's little theorem $8^{10} \equiv 1(\bmod 11)\left(\right.$ or $\left.41^{10} \equiv 1(\bmod 11)\right) \quad$ M1
$8^{82} \equiv 8^{2}(\bmod 11) \quad$ M1
$\equiv 9(\bmod 11) \quad$ (A1)
remainder is 9 A1
[4 marks]
Note: Accept simplifications done without Fermat.
(c) $41^{82} \equiv 1^{82} \equiv 1(\bmod 5)$
so 41^{82} has a remainder 1 when divided by 5 and a remainder 9 when divided by 11
hence by part (a) the remainder is 31

R1
A1

A1
[3 marks]
Total [10 marks]
5. (a) $\frac{1}{2}$
(b) Andy could win the nth game by winning the $n-1$ th and then winning the nth game or by losing the $n-1$ th and then winning the nth

$$
u_{n}=\frac{1}{2} u_{n-1}+\frac{1}{4}\left(1-u_{n-1}\right)
$$

Note: Award $\boldsymbol{A 1}$ for each term and $\boldsymbol{M 1}$ for addition of two probabilities.

$$
u_{n}=\frac{1}{4} u_{n-1}+\frac{1}{4}
$$

(c) general solution is $u_{n}=A\left(\frac{1}{4}\right)^{n}+p(n)$
for a particular solution try $p(n)=b$
$b=\frac{1}{4} b+\frac{1}{4}$
$b=\frac{1}{3}$
hence $u_{n}=A\left(\frac{1}{4}\right)^{n}+\frac{1}{3}$
using $u_{1}=\frac{1}{2}$
$\frac{1}{2}=A\left(\frac{1}{4}\right)+\frac{1}{3} \Rightarrow A=\frac{2}{3}$
hence $u_{n}=\frac{2}{3}\left(\frac{1}{4}\right)^{n}+\frac{1}{3}$
Note: Accept other valid methods.

Mathematics
 Higher level
 Paper 3 - calculus

SPECIMEN (adapted from November 2014)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the mathematics HL and further mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [50 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 14]
(a) Use the integral test to determine the convergence or divergence of

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{0.5}} \tag{3}
\end{equation*}
$$

(b) Let $S=\sum_{n=1}^{\infty} \frac{(x+1)^{n}}{2^{n} \times n^{0.5}}$.
(i) Use the ratio test to show that S is convergent for $-3<x<1$.
(ii) Hence find the interval of convergence for S.
2. [Maximum mark: 13]
(a) Use an integrating factor to show that the general solution for $\frac{\mathrm{d} x}{\mathrm{~d} t}-\frac{x}{t}=-\frac{2}{t}, t>0$ is $x=2+c t$, where c is a constant.

The weight in kilograms of a dog, t weeks after being bought from a pet shop, can be modelled by the following function

$$
w(t)=\left\{\begin{array}{lc}
2+c t & 0 \leq t \leq 5 \\
16-\frac{35}{t} & t>5
\end{array} .\right.
$$

(b) Given that $w(t)$ is continuous, find the value of c.
(c) Write down an upper bound for the weight of the dog.
(d) Prove from first principles that $w(t)$ is differentiable at $t=5$.
3. [Maximum mark: 10]

Consider the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x, y)$ where $f(x, y)=y-2 x$.
(a) Sketch, on one diagram, the four isoclines corresponding to $f(x, y)=k$ where k takes the values $-1,-0.5,0$ and 1 . Indicate clearly where each isocline crosses the y-axis.

A curve, C, passes through the point $(0,1)$ and satisfies the differential equation above.
(b) Sketch C on your diagram.
(c) State a particular relationship between the isocline $f(x, y)=-0.5$ and the curve C, at their point of intersection.
(d) Use Euler's method with a step interval of 0.1 to find an approximate value for y on C, when $x=0.5$.
4. [Maximum mark: 13]

In this question you may assume that $\arctan x$ is continuous and differentiable for $x \in \mathbb{R}$.
(a) Consider the infinite geometric series

$$
1-x^{2}+x^{4}-x^{6}+\ldots \quad|x|<1
$$

Show that the sum of the series is $\frac{1}{1+x^{2}}$.
(b) Hence show that an expansion of $\arctan x$ is $\arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots$
(c) f is a continuous function defined on $[a, b]$ and differentiable on $] a, b\left[\right.$ with $f^{\prime}(x)>0$ on $] a, b[$.

Use the mean value theorem to prove that for any $x, y \in[a, b]$, if $y>x$ then $f(y)>f(x)$.
(d) (i) Given $g(x)=x-\arctan x$, prove that $g^{\prime}(x)>0$, for $x>0$.
(ii) Use the result from part (c) to prove that $\arctan x<x$, for $x>0$.

Markscheme

Specimen (adapted from November 2014)

Calculus

Higher level

Paper 3

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1

General

Mark according to $\mathrm{RM}^{\text {TM }}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking May 2016". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by RM ${ }^{\text {TM }}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.
Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$. (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (for example, $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER... OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award A1 for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution
Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) $\int_{1}^{\infty} x^{-0.5} \mathrm{~d} x$

$$
=\lim _{H \rightarrow \infty}\left[2 x^{0.5}\right]_{1}^{H}
$$

Note: Accept $\left[2 x^{0.5}\right]_{1}^{\infty}$.
this is not finite so series is divergent
R1
Notes: Accept equivalent eg $\rightarrow \infty$, or "limit does not exist".
If lower limit is not equal to 1 award MOAO, but the $\boldsymbol{R 1}$ can still be awarded if the final reasoning is correct.
(b) (i) applying the ratio test

M1
$\lim _{n \rightarrow \infty}\left|\frac{(x+1)^{n+1}}{2^{n+1}(n+1)^{0.5}} \times \frac{2^{n} n^{0.5}}{(x+1)^{n}}\right|$
$\lim _{n \rightarrow \infty}\left|\frac{(x+1) n^{0.5}}{2(n+1)^{0.5}}\right|=\left|\frac{(x+1)}{2}\right|$
Note: Do not penalize the absence of limits and modulus signs.
converges if $\left|\frac{x+1}{2}\right|<1 \Rightarrow-1<\frac{(x+1)}{2}<1$
$\Rightarrow-3<x<1$
Note: Accept $-2<x+1<2$.
(ii) considering end points M1
when $x=-3$, series is $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{0.5}}$
$\frac{1}{n^{0.5}}$ is a decreasing sequence with limit zero,
so series converges by alternating series test R1
when $x=1$, series is $\sum_{n=1}^{\infty} \frac{1}{n^{0.5}}$ which diverges by part (a) or p-series A1

Note: This A1 is for both the reasoning and the statement it diverges.
interval of convergence is $-3 \leq x<1$
2. (a) integrating factor $\mathrm{e}^{\int-\frac{1}{t} \mathrm{dt}}=\mathrm{e}^{-\ln t}\left(=\frac{1}{t}\right)$

M1A1

$$
\begin{equation*}
\frac{x}{t}=\int-\frac{2}{t^{2}} \mathrm{~d} t=\frac{2}{t}+c \tag{A1A1}
\end{equation*}
$$

Note: Award $\boldsymbol{A 1}$ for $\frac{x}{t}$ and $\boldsymbol{A 1}$ for $\frac{2}{t}+c$.

$$
x=2+c t
$$

(b) given continuity at $x=5$

$$
5 c+2=16-\frac{35}{5} \Rightarrow c=\frac{7}{5}
$$

(c) any value ≥ 16

Note: Accept values less than 16 if fully justified by reference to the maximum age for a dog.
[1 mark]
(d) $\lim _{h \rightarrow 0-}\left(\frac{\frac{7}{5}(5+h)+2-\frac{7}{5}(5)-2}{h}\right)=\frac{7}{5}$
$\lim _{h \rightarrow 0+}\left(\frac{16-\frac{35}{5+h}-16+\frac{35}{5}}{h}\right)\left(\lim _{h \rightarrow 0+}\left(\frac{\frac{-35}{5+h}+7}{h}\right)\right)$
$=\lim _{h \rightarrow 0+}\left(\frac{\frac{-35+35+7 h}{(5+h)}}{h}\right)=\lim _{h \rightarrow 0+}\left(\frac{7}{5+h}\right)=\frac{7}{5}$
M1
both limits equal so differentiable at $t=5$
Notes: The limits $t \rightarrow 5$ could also be used.
For each value of $\frac{7}{5}$ obtained by standard differentiation award $\boldsymbol{A 1}$.
To gain the other [4 marks] a rigorous explanation must be given on how you can get from the left and right hand derivatives to the derivative.

Notes: If the candidate works with t and then substitutes $t=5$ at the end award as follows.
First $\boldsymbol{M} \mathbf{1}$ for using formula with t in the linear case, $\boldsymbol{A} \mathbf{1}$ for $\frac{7}{5}$.
Award next 2 method marks even if $t=5$ not substituted, A1 for $\frac{7}{5}$.
3. (a) and (b)

(a) A1 for 4 parallel straight lines with a positive gradient

A1 for correct y intercepts

A1
[2 marks]
(b) A1 for passing through $(0,1)$ with positive gradient less than 2

A1 for stationary point on $y=2 x$
A1 for negative gradient on both of the other 2 isoclines
A1A1A1
(c) the isocline is perpendicular to C
(d) $y_{n+1}=y_{n}+0.1\left(y_{n}-2 x_{n}\right)\left(=1.1 y_{n}-0.2 x_{n}\right)$
(M1)(A1)
Note: Also award M1A1 if no formula seen but y_{2} is correct.
$y_{0}=1, y_{1}=1.1, y_{2}=1.19, y_{3}=1.269, y_{4}=1.3359$
$y_{5}=1.39$ to 3 sf
Note: $\mathbf{M 1}$ is for repeated use of their formula, with steps of 0.1 .
Note: Accept 1.39 or 1.4 only.
4. (a) $r=-x^{2}, S=\frac{1}{1+x^{2}}$
(b) $\frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+\ldots$

EITHER

$\int \frac{1}{1+x^{2}} \mathrm{~d} x=\int 1-x^{2}+x^{4}-x^{6}+\ldots \mathrm{d} x$
$\arctan x=c+x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots$
Note: Do not penalize the absence of c at this stage.
when $x=0$ we have $\arctan 0=c$ hence $c=0$
OR
$\int_{0}^{x} \frac{1}{1+t^{2}} \mathrm{~d} t=\int_{0}^{x} 1-t^{2}+t^{4}-t^{6}+\ldots \mathrm{d} t$
M1A1A1

Notes: Allow x as the variable as well as the limit.
$\boldsymbol{M 1}$ for knowing to integrate, $\boldsymbol{A 1}$ for each of the limits.
$[\arctan t]_{0}^{x}=\left[t-\frac{t^{3}}{3}+\frac{t^{5}}{5}-\frac{t^{7}}{7}+\ldots\right]_{0}^{x}$
A1
hence $\arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots$
(c) applying the MVT to the function f on the interval $[x, y]$
$\frac{f(y)-f(x)}{y-x}=f^{\prime}(c)$ (for some $\left.c \in\right] x, y[$)
$\frac{f(y)-f(x)}{y-x}>0\left(\right.$ as $\left.f^{\prime}(c)>0\right)$ R1
$f(y)-f(x)>0$ as $y>x \quad$ R1
$\Rightarrow f(y)>f(x)$

Note: If they use x rather than c they should be awarded M1A0R0, but could get the next R1.

Question 4 continued
(d) (i) $g(x)=x-\arctan x \Rightarrow g^{\prime}(x)=1-\frac{1}{1+x^{2}}$
$\begin{array}{ll}\text { this is greater than zero because } \frac{1}{1+x^{2}}<1 & \mathbf{R 1} \\ \text { so } g^{\prime}(x)>0 & \mathbf{A G}\end{array}$
(ii) (g is a continuous function defined on $[0, b]$ and differentiable on $] 0, b\left[\right.$ with $g^{\prime}(x)>0$ on $] 0, b[$ for all $b \in \mathbb{R})$ (if $x \in[0, b]$ then) from part (c) $g(x)>g(0) \quad$ M1
$x-\arctan x>0 \Rightarrow \arctan x<x \quad$ M1
(as b can take any positive value it is true for all $x>0$) AG
[4 marks]
Total [13 marks]

Mathematics
 Higher level
 Paper 3 - sets, relations and groups

SPECIMEN (adapted from November 2014)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the mathematics HL and further mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [50 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 12]

A group with the binary operation of multiplication modulo 15 is shown in the following Cayley table.

\times_{15}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{1 1}$	$\mathbf{1 3}$	$\mathbf{1 4}$
$\mathbf{1}$	1	2	4	7	8	11	13	14
$\mathbf{2}$	2	4	8	14	1	7	11	13
$\mathbf{4}$	4	8	1	13	2	14	7	11
$\mathbf{7}$	7	14	13	4	11	2	1	8
$\mathbf{8}$	8	1	2	11	4	13	14	7
$\mathbf{1 1}$	11	7	14	2	13	a	b	c
$\mathbf{1 3}$	13	11	7	1	14	d	e	f
$\mathbf{1 4}$	14	13	11	8	7	g	h	i

(a) Find the values represented by each of the letters in the table.
(b) Find the order of each of the elements of the group.
(c) Write down the three sets that form subgroups of order 2.
(d) Find the three sets that form subgroups of order 4.
2. [Maximum mark: 8]

Define $f: \mathbb{R} \backslash\{0.5\} \rightarrow \mathbb{R}$ by $f(x)=\frac{4 x+1}{2 x-1}$.
(a) Prove that f is an injection.
(b) Prove that f is not a surjection.
3. [Maximum mark: 9]

Consider the set A consisting of all the permutations of the integers $1,2,3,4,5$.
(a) Two members of A are given by $p=(125)$ and $q=(13)(25)$.

Find the single permutation which is equivalent to $q \circ p$.
(b) State a permutation belonging to A of order 6 .
(c) Let $P=$ \{all permutations in A where exactly two integers change position\}, and $Q=\{$ all permutations in A where the integer 1 changes position $\}$.
(i) List all the elements in $P \cap Q$.
(ii) Find $n\left(P \cap Q^{\prime}\right)$.
4. [Maximum mark: 10]

The group $\{G, *\}$ has identity e_{G} and the group $\{H, \circ\}$ has identity e_{H}. A homomorphism f is such that $f: G \rightarrow H$. It is given that $f\left(e_{G}\right)=e_{H}$.
(a) Prove that for all $a \in G, f\left(a^{-1}\right)=(f(a))^{-1}$.

Let $\{H, \circ\}$ be the cyclic group of order seven, and let p be a generator.
Let $x \in G$ such that $f(x)=p^{2}$.
(b) Find $f\left(x^{-1}\right)$.
(c) Given that $f(x * y)=p$, find $f(y)$.
5. [Maximum mark: 11]
$\{G, *\}$ is a group with identity element e. Let $a, b \in G$.
(a) Verify that the inverse of $a * b^{-1}$ is equal to $b * a^{-1}$.

Let $\{H, *\}$ be a subgroup of $\{G, *\}$. Let R be a relation defined on G by

$$
a R b \Leftrightarrow a * b^{-1} \in H .
$$

(b) Prove that R is an equivalence relation, indicating clearly whenever you are using one of the four properties required of a group.

Markscheme

Specimen (adapted from November 2014)

Sets, relations and groups

Higher level

Paper 3

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1

General

Mark according to $\mathrm{RM}^{\text {M }}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking May 2016". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\text {M }}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.
Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 . .$. (incorrect decimal value)	Award the final A1 (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (for example, $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Misread

If a candidate incorrectly copies information from the question, this is a misread (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the MR leads to an inappropriate value (for example, $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER... OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

Accuracy of Answers
Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution
Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) $a=1, b=8, c=4$,
$d=8, e=4, f=2$,
$g=4, h=2, i=1$
Note: Award $\mathbf{A 3}$ for 9 correct answers, $\boldsymbol{A} \mathbf{2}$ for 6 or more, and $\mathbf{A 1}$ for 3 or more.
[3 marks]
(b)

Elements	Order
1	1
$4,11,14$	2
$2,7,8,13$	4

A3
Note: Award $\boldsymbol{A} 3$ for 8 correct answers, $\boldsymbol{A} 2$ for 6 or more, and $\boldsymbol{A 1}$ for 4 or more.
(c) $\{1,4\},\{1,11\},\{1,14\}$

A1A1
[2 marks]
(d) $\{1,2,4,8\},\{1,4,7,13\}$,
$\{1,4,11,14\}$

A1A1
A2
[4 marks]
Total [12 marks]
2. (a) METHOD 1
$f(x)=f(y) \Rightarrow \frac{4 x+1}{2 x-1}=\frac{4 y+1}{2 y-1}$
M1A1
for attempting to cross multiply and simplify
$(4 x+1)(2 y-1)=(2 x-1)(4 y+1)$
$\Rightarrow 8 x y+2 y-4 x-1=8 x y+2 x-4 y-1 \Rightarrow 6 y=6 x$
$\Rightarrow x=y$
A1
hence an injection AG
[4 marks]

METHOD 2

$f^{\prime}(x)=\frac{4(2 x-1)-2(4 x+1)}{(2 x-1)^{2}}=\frac{-6}{(2 x-1)^{2}}$
<0 (for all $x \neq 0.5$)
therefore the function is decreasing on either side of the discontinuity and $f(x)<2$ for $x<0.5$ and $x>2$ for $f(x)>0.5$
hence an injection
AG
Note: If a correct graph of the function is shown, and the candidate states this is decreasing in each part (or horizontal line test) and hence an injection, award M1A1R1.

(b) METHOD 1

attempt to solve $y=\frac{4 x+1}{2 x-1}$
$y(2 x-1)=4 x+1 \Rightarrow 2 x y-y=4 x+1$
$2 x y-4 x=1+y \Rightarrow x=\frac{1+y}{2 y-4}$
no value for $y=2$
hence not a surjection

METHOD 2

consider $y=2 \quad$ A1
attempt to solve $2=\frac{4 x+1}{2 x-1}$
$4 x-2=4 x+1$
which has no solution R1
hence not a surjection AG
Note: If a correct graph of the function is shown, and the candidate states that because there is a horizontal asymptote at $y=2$ then the function is not a surjection, award M1R1.
3. (a) $q \circ p=(13)(25)(125)$

$$
=(153)
$$

Note: M1 for an answer consisting of disjoint cycles, A1 for (153).
Note: Allow $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 1 & 4 & 3\end{array}\right)$, allow (153)(2).
If done in the wrong order and obtained (1 32), award $\boldsymbol{A} 2$.
(b) any permutation with 2 disjoint cycles one of length 2 and one of length 3 eg (12) (3 4 5)

M1A1
Notes: Award M1A0 for any permutation with 2 non-disjoint cycles one of length 2 and one of length 3 . Accept non cycle notation.
(c) (i) $(1,2),(1,3),(1,4),(1,5)$

M1A1
(ii) (2 3), (2 4), (2 5), (3 4), (3 5), (4 5)
(M1)
6
A1
Note: Award M1 for at least one correct cycle.
4. (a) $f\left(e_{G}\right)=e_{H} \Rightarrow f\left(a * a^{-1}\right)=e_{H}$

M1
f is a homomorphism so $f\left(a^{*} a^{-1}\right)=f(a) \circ f\left(a^{-1}\right)=e_{H}$
M1A1
by definition $f(a) \circ(f(a))^{-1}=e_{H}$ so $f\left(a^{-1}\right)=(f(a))^{-1}$ (by the left-cancellation law)
(b) from (a) $f\left(x^{-1}\right)=(f(x))^{-1}$
hence $f\left(x^{-1}\right)=\left(p^{2}\right)^{-1}=p^{5}$
(c) $\quad f\left(x^{*} y\right)=f(x) \circ f(y)$ (homomorphism)
(M1)
$p^{2} \circ f(y)=p$
$f(y)=p^{5} \circ p$
$=p^{6}$
5. (a) METHOD 1

$$
\left(a * b^{-1}\right) *\left(b * a^{-1}\right)=a * b^{-1} * b * a^{-1}=a * e * a^{-1}=a * a^{-1}=e
$$

Notes: M1 for multiplying, A1 for at least one of the next 3 expressions, $\boldsymbol{A 1}$ for e.

$$
\text { Allow }\left(b^{*} a^{-1}\right) *\left(a * b^{-1}\right)=b^{*} a^{-1} * a * b^{-1}=b^{*} e^{*} b^{-1}=b^{*} b^{-1}=e .
$$

METHOD 2

$\left(a * b^{-1}\right)^{-1}=\left(b^{-1}\right)^{-1} * a^{-1}$
$=b^{*} a^{-1}$
(b) $\quad a^{*} a^{-1}=e \in H$ (as H is a subgroup)
so $a R a$ and hence R is reflexive
$a R b \Leftrightarrow a^{*} b^{-1} \in H . H$ is a subgroup so every element has an inverse in
H so $\left(a * b^{-1}\right) \in H$
$\Leftrightarrow b^{*} a^{-1} \in H \Leftrightarrow b R a$
so R is symmetric
$a R b, b R c \Leftrightarrow a^{*} b^{-1} \in H, b^{*} c^{-1} \in H$
as H is closed $\left(a^{*} b^{-1}\right) *\left(b^{*} c^{-1}\right) \in H$
and using associativity
$\left(a^{*} b^{-1}\right) *\left(b^{*} c^{-1}\right)=a *\left(b^{-1} * b\right) * c^{-1}=a^{*} c^{-1} \in H \Leftrightarrow a R c$ A1
therefore R is transitive
R is reflexive, symmetric and transitive
Note: Can be said separately at the end of each part.
hence it is an equivalence relation

Mathematics
 Higher level
 Paper 3 - statistics and probability

SPECIMEN (adapted from November 2014)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the mathematics HL and further mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [50 marks]

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 7]

A random variable X has probability density function

$$
f(x)=\left\{\begin{array}{cc}
0 & x<0 \\
\frac{1}{2} & 0 \leq x<1 \\
\frac{1}{4} & 1 \leq x<3 \\
0 & x \geq 3
\end{array} .\right.
$$

(a) Sketch the graph of $y=f(x)$.
(b) Find the cumulative distribution function for X.
(c) Find the upper quartile for X.
2. [Maximum mark: 9]

Eric plays a game at a fairground in which he throws darts at a target. Each time he throws a dart, the probability of hitting the target is 0.2 . He is allowed to throw as many darts as he likes, but it costs him $\$ 1$ a throw. If he hits the target a total of three times he wins $\$ 10$.
(a) Find the probability he has his third success of hitting the target on his sixth throw.
(b) (i) Find the expected number of throws required for Eric to hit the target three times.
(ii) Write down his expected profit or loss if he plays until he wins the $\$ 10$.
(c) If he has just $\$ 8$, find the probability he will lose all his money before he hits the target three times.
3. [Maximum mark: 11]
(a) If X and Y are two random variables such that $\mathrm{E}(X)=\mu_{X}$ and $\mathrm{E}(Y)=\mu_{Y}$ then $\operatorname{Cov}(X, Y)=\mathrm{E}\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right)$.

Prove that if X and Y are independent then $\operatorname{Cov}(X, Y)=0$.
(b) In a particular company, it is claimed that the distance travelled by employees to work is independent of their salary. To test this, 20 randomly selected employees are asked about the distance they travel to work and the size of their salaries. It is found that the product moment correlation coefficient, r, for the sample is -0.35 .

You may assume that both salary and distance travelled to work follow normal distributions.

Perform a one-tailed test at the 5% significance level to test whether or not the distance travelled to work and the salaries of the employees are independent.
4. [Maximum mark: 13]

If X is a random variable that follows a Poisson distribution with mean $\lambda>0$ then the probability generating function of X is $G(t)=e^{\lambda(t-1)}$.
(a) (i) Prove that $\mathrm{E}(X)=\lambda$.
(ii) Prove that $\operatorname{Var}(X)=\lambda$.
Y is a random variable, independent of X, that also follows a Poisson distribution with mean λ.
(b) If $S=2 X-Y$ find
(i) $\mathrm{E}(S)$;
(ii) $\operatorname{Var}(S)$.

Let $T=\frac{X}{2}+\frac{Y}{2}$.
(c) (i) Show that T is an unbiased estimator for λ.
(ii) Show that T is a more efficient unbiased estimator of λ than S.
(d) Could either S or T model a Poisson distribution? Justify your answer.
5. [Maximum mark: 10]

Two species of plant, A and B, are identical in appearance though it is known that the mean length of leaves from a plant of species A is 5.2 cm , whereas the mean length of leaves from a plant of species B is 4.6 cm . Both lengths can be modelled by normal distributions with standard deviation 1.2 cm .

In order to test whether a particular plant is from species A or species B, 16 leaves are collected at random from the plant. The length, x, of each leaf is measured and the mean length evaluated. A one-tailed test of the sample mean, \bar{X}, is then performed at the 5% level, with the hypotheses: $H_{0}: \mu=5.2$ and $H_{1}: \mu<5.2$.
(a) Find the critical region for this test.
(b) Find the probability of a Type II error if the leaves are in fact from a plant of species B.

It is now known that in the area in which the plant was found 90% of all the plants are of species A and 10% are of species B.
(c) Find the probability that \bar{X} will fall within the critical region of the test.
(d) If, having done the test, the sample mean is found to lie within the critical region, find the probability that the leaves came from a plant of species A.

Markscheme

Specimen (adapted from November 2014)

Statistics and probability

Higher level

Paper 3

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1

General

Mark according to $\mathrm{RM}^{\text {TM }}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking May 2016". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\text {M }}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.
Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final A1 (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (for example, $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Misread

If a candidate incorrectly copies information from the question, this is a misread (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the MR leads to an inappropriate value (for example, $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER... OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

Accuracy of Answers
Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution
Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a)

Note: Ignore open / closed endpoints and vertical lines.
Note: Award A1 for a correct graph with scales on both axes and a clear indication of the relevant values.
(b)
$F(x)=\left\{\begin{array}{cc}0 & x<0 \\ \frac{x}{2} & 0 \leq x<1 \\ \frac{x}{4}+\frac{1}{4} & 1 \leq x<3 \\ 1 & x \geq 3\end{array}\right.$
considering the areas in their sketch or using integration
$F(x)=0, \quad x<0, F(x)=1, \quad x \geq 3$
$F(x)=\frac{x}{2}, \quad 0 \leq x<1$
$F(x)=\frac{x}{4}+\frac{1}{4}, \quad 1 \leq x<3$
Note: Accept $<$ for \leq in all places and also $>$ for \geq first $\boldsymbol{A 1}$.
[5 marks]
(c) $\mathrm{Q}_{3}=2$

A1
[1 mark]
Total [7 marks]
2. (a) METHOD 1
let X be the number of throws until Eric hits the target three times
$X \sim \mathrm{NB}(3,0.2)$
$\mathrm{P}(X=6)=\binom{5}{2} 0.8^{3} \times 0.2^{3}$
$=0.04096\left(=\frac{128}{3125}\right)$ (exact)

METHOD 2

let X be the number of hits in five throws
X is $\mathrm{B}(5,0.2)$
$\mathrm{P}(X=2)=\binom{5}{2} 0.2^{3} \times 0.8^{3} \quad(0.2048)$
(A1)
$\mathrm{P}(3$ rd hit on 6th throw $)=\binom{5}{2} 0.2^{2} \times 0.8^{3} \times 0.2=0.04096\left(=\frac{128}{3125}\right)$ (exact)
(b) (i) expected number of throws $=\frac{3}{0.2}=15$
(M1)A1
(ii) \quad profit $=(10-15)=-\$ 5$ or loss $=\$ 5$
(c) METHOD 1
let Y be the number of times the target is hit in 8 throws
$Y \sim \mathrm{~B}(8,0.2)$
$\mathrm{P}(Y \leq 2)$
$=0.797$

METHOD 2

let the 3rd hit occur on the Yth throw
Y is $\mathrm{NB}(3,0.2)$
(M1)
$\mathrm{P}(Y>8)=1-\mathrm{P}(Y \leq 8)$
(M1)
A1
3. (a) METHOD 1

$$
\begin{align*}
& \operatorname{Cov}(X, Y)=\mathrm{E}\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right) \\
& =\mathrm{E}\left(X Y-X \mu_{Y}-Y \mu_{X}+\mu_{X} \mu_{Y}\right) \tag{M1}\\
& =\mathrm{E}(X Y)-\mu_{Y} \mathrm{E}(X)-\mu_{X} \mathrm{E}(Y)+\mu_{X} \mu_{Y} \\
& =\mathrm{E}(X Y)-\mu_{X} \mu_{Y} \\
& \text { as } X \text { and } Y \text { are independent } \mathrm{E}(X Y)=\mu_{X} \mu_{Y} \\
& \operatorname{Cov}(X, Y)=0
\end{align*}
$$

METHOD 2

$\operatorname{Cov}(X, Y)=\mathrm{E}\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right)$
$=\mathrm{E}\left(X-\mu_{x}\right) \mathrm{E}\left(Y-\mu_{y}\right)$
since X, Y are independent \quad R1
$=\left(\mu_{x}-\mu_{x}\right)\left(\mu_{y}-\mu_{y}\right) \quad$ A1
$=0$
(b) $\quad H_{0}: \rho=0 \quad H_{1}: \rho<0$

Note: The hypotheses must be expressed in terms of ρ.
test statistic $t_{\text {test }}=-0.35 \sqrt{\frac{20-2}{1-(-0.35)^{2}}}$
$=-1.585 \ldots$
degrees of freedom $=18$

EITHER

p-value $=0.0652$A1
this is greater than $0.05 \quad$ M1
OR
$t_{5 \%}(18)=-1.73$
this is less than -1.59

THEN

hence accept H_{0} or reject H_{1} or equivalent or contextual equivalent
Note: Allow follow through for the final R1 mark.
4.
(a) (i) $G^{\prime}(t)=\lambda e^{\lambda(t-1)}$
A1
$\mathrm{E}(X)=G^{\prime}(1)$ M1
$=\lambda$ AG
(ii) $\quad G^{\prime \prime}(t)=\lambda^{2} e^{\lambda(t-1)}$
$\Rightarrow G^{\prime \prime}(1)=\lambda^{2}$
$\operatorname{Var}(X)=G^{\prime \prime}(1)+G^{\prime}(1)-\left(G^{\prime}(1)\right)^{2}$
$=\lambda^{2}+\lambda-\lambda^{2}$
$=\lambda$
(b) (i) $\mathrm{E}(S)=2 \lambda-\lambda=\lambda$
A1
(ii) $\operatorname{Var}(S)=4 \lambda+\lambda=5 \lambda$
(A1)A1
Note: First $\boldsymbol{A 1}$ can be awarded for either 4λ or $+\lambda$.
(c) (i) $\mathrm{E}(T)=\frac{\lambda}{2}+\frac{\lambda}{2}=\lambda$ (so T is an unbiased estimator)
A1
(ii) $\operatorname{Var}(T)=\frac{1}{4} \lambda+\frac{1}{4} \lambda=\frac{1}{2} \lambda$
A1
this is less than $\operatorname{Var}(S)$, therefore T is the more efficient estimator
R1AG
Note: Follow through their variances from (b)(ii) and(c)(ii).
(d) no, mean does not equal the variance
[3 marks]
5. (a) $\bar{X} \sim N\left(5.2, \frac{1.2^{2}}{16}\right)$
(M1)
critical value is $5.2-1.64485 \ldots \times \frac{1.2}{4}=4.70654 \ldots$ critical region is]- $\infty, 4.71$]
Note: Allow follow through for the final $\boldsymbol{A 1}$ from their critical value.
Note: Follow through previous values in (b), (c) and (d).
(b) type II error probability $=\mathrm{P}\left(\bar{X}>4.70654 \ldots \mid \bar{X}\right.$ is $\left.N\left(4.6, \frac{1,2^{2}}{16}\right)\right)$ $=0.361$
(M1)
A1
[2 marks]
(c) $0.9 \times 0.05+0.1 \times(1-0.361 \ldots)=0.108875997 \ldots=0.109$

M1A1
Note: Award $\boldsymbol{M} \mathbf{1}$ for a weighted average of probabilities with weights $0.1,0.9$.
(d) attempt to use conditional probability formula M1

$$
\begin{aligned}
& \frac{0.9 \times 0.05}{0.108875997 \ldots} \\
& =0.41334 \ldots=0.413
\end{aligned}
$$

(A1) A1
[3 marks]
Total [10 marks]

